Abstract

An experimental technique to determine the end-face scattering loss in electro-optic polymer channel waveguides is presented. The technique combines the cut-back and the optimum end-fire coupling methods. A loss resulting from the scattering was a prominent source of waveguide coupling loss and was strongly dependent on the end-face roughness of the guiding and cladding layers induced by cleaving. With the use of our investigation methods, other losses could also be examined with ease and high reliability.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Kim, E.-H. Lee, “Utility potential of nonlinear optical polymers for optical telecommunication and switching applications,” Mol. Cryst. Liq. Cryst. 227, 71–84 (1993).
    [CrossRef]
  2. C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
    [CrossRef]
  3. W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
    [CrossRef]
  4. M.-C. Oh, W.-Y. Hwang, J.-J. Kim, “Integrated-optic polarization controlling devices using electro-optic polymers,” ETRI J. 18, 287–299 (1997).
    [CrossRef]
  5. R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
    [CrossRef]
  6. W. K. Burns, G. B. Hocker, “End fire coupling between optical fibers and diffused channel waveguides,” Appl. Opt. 16, 2048–2050 (1977).
    [CrossRef] [PubMed]
  7. I. M. Ward, Mechanical Properties of Solid Polymers (Wiley, New York, 1982), pp. 442–456.
  8. J. P. Berry, I. Wolock, S. B. Newman, in Fracture Processes in Polymeric Solids, B. Rosen, ed. (Wiley, New York, 1984), pp. 195–290.
  9. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, New York, 1982), pp. 83–85.
  10. O. A. Vlasenko, E. M. Zolotov, R. F. Tavlykaev, “Method for measuring losses in channel waveguides,” Sov. J. Quantum Electron. 19, 681–682 (1989).
    [CrossRef]
  11. R. Regener, W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
    [CrossRef]
  12. K. Takada, S. Yokohama, K. Chiba, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987).
    [CrossRef] [PubMed]
  13. M. Haruma, Y. Segawa, H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
    [CrossRef]
  14. P. J. Brannon, “Improved method of measuring optical waveguide propagation losses,” Appl. Opt. 25, 3596–3597 (1986).
    [CrossRef] [PubMed]

1997 (1)

M.-C. Oh, W.-Y. Hwang, J.-J. Kim, “Integrated-optic polarization controlling devices using electro-optic polymers,” ETRI J. 18, 287–299 (1997).
[CrossRef]

1995 (1)

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

1993 (1)

J.-J. Kim, E.-H. Lee, “Utility potential of nonlinear optical polymers for optical telecommunication and switching applications,” Mol. Cryst. Liq. Cryst. 227, 71–84 (1993).
[CrossRef]

1992 (2)

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
[CrossRef]

M. Haruma, Y. Segawa, H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

1989 (1)

O. A. Vlasenko, E. M. Zolotov, R. F. Tavlykaev, “Method for measuring losses in channel waveguides,” Sov. J. Quantum Electron. 19, 681–682 (1989).
[CrossRef]

1987 (1)

1986 (1)

1985 (1)

R. Regener, W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

1982 (1)

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

1977 (1)

Alferness, R. C.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

Berry, J. P.

J. P. Berry, I. Wolock, S. B. Newman, in Fracture Processes in Polymeric Solids, B. Rosen, ed. (Wiley, New York, 1984), pp. 195–290.

Brannon, P. J.

Buhl, L. L.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

Burns, W. K.

Chiba, K.

Divino, M. D.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

Haruma, M.

M. Haruma, Y. Segawa, H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

Hocker, G. B.

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, New York, 1982), pp. 83–85.

Hwang, W.-Y.

M.-C. Oh, W.-Y. Hwang, J.-J. Kim, “Integrated-optic polarization controlling devices using electro-optic polymers,” ETRI J. 18, 287–299 (1997).
[CrossRef]

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

Kim, J.-J.

M.-C. Oh, W.-Y. Hwang, J.-J. Kim, “Integrated-optic polarization controlling devices using electro-optic polymers,” ETRI J. 18, 287–299 (1997).
[CrossRef]

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

J.-J. Kim, E.-H. Lee, “Utility potential of nonlinear optical polymers for optical telecommunication and switching applications,” Mol. Cryst. Liq. Cryst. 227, 71–84 (1993).
[CrossRef]

Korotky, S. K.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

Lee, E.-H.

J.-J. Kim, E.-H. Lee, “Utility potential of nonlinear optical polymers for optical telecommunication and switching applications,” Mol. Cryst. Liq. Cryst. 227, 71–84 (1993).
[CrossRef]

Newman, S. B.

J. P. Berry, I. Wolock, S. B. Newman, in Fracture Processes in Polymeric Solids, B. Rosen, ed. (Wiley, New York, 1984), pp. 195–290.

Nishihara, H.

M. Haruma, Y. Segawa, H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

Noda, J.

Oh, M.-C.

M.-C. Oh, W.-Y. Hwang, J.-J. Kim, “Integrated-optic polarization controlling devices using electro-optic polymers,” ETRI J. 18, 287–299 (1997).
[CrossRef]

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

Ramaswamy, V. R.

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

Regener, R.

R. Regener, W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Segawa, Y.

M. Haruma, Y. Segawa, H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

Shin, S.-Y.

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

Sohler, W.

R. Regener, W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Takada, K.

Tavlykaev, R. F.

O. A. Vlasenko, E. M. Zolotov, R. F. Tavlykaev, “Method for measuring losses in channel waveguides,” Sov. J. Quantum Electron. 19, 681–682 (1989).
[CrossRef]

Teng, C. C.

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
[CrossRef]

Vlasenko, O. A.

O. A. Vlasenko, E. M. Zolotov, R. F. Tavlykaev, “Method for measuring losses in channel waveguides,” Sov. J. Quantum Electron. 19, 681–682 (1989).
[CrossRef]

Ward, I. M.

I. M. Ward, Mechanical Properties of Solid Polymers (Wiley, New York, 1982), pp. 442–456.

Wolock, I.

J. P. Berry, I. Wolock, S. B. Newman, in Fracture Processes in Polymeric Solids, B. Rosen, ed. (Wiley, New York, 1984), pp. 195–290.

Yokohama, S.

Zolotov, E. M.

O. A. Vlasenko, E. M. Zolotov, R. F. Tavlykaev, “Method for measuring losses in channel waveguides,” Sov. J. Quantum Electron. 19, 681–682 (1989).
[CrossRef]

Zyung, T.

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

R. Regener, W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985).
[CrossRef]

Appl. Phys. Lett. (2)

C. C. Teng, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electrical bandwidth,” Appl. Phys. Lett. 60, 1538–1540 (1992).
[CrossRef]

W.-Y. Hwang, J.-J. Kim, T. Zyung, M.-C. Oh, S.-Y. Shin, “Postphotobleaching method for the control of coupling constant in an electro-optic polymer directional coupler switch,” Appl. Phys. Lett. 67, 763–765 (1995).
[CrossRef]

Electron. Lett. (1)

M. Haruma, Y. Segawa, H. Nishihara, “Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling,” Electron. Lett. 28, 1612–1613 (1992).
[CrossRef]

ETRI J. (1)

M.-C. Oh, W.-Y. Hwang, J.-J. Kim, “Integrated-optic polarization controlling devices using electro-optic polymers,” ETRI J. 18, 287–299 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. C. Alferness, V. R. Ramaswamy, S. K. Korotky, M. D. Divino, L. L. Buhl, “Efficient single-mode fiber to titanium diffused lithium niobate waveguide coupling for λ = 1.32 µm,” IEEE J. Quantum Electron. QE-18, 1807–1813 (1982).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

J.-J. Kim, E.-H. Lee, “Utility potential of nonlinear optical polymers for optical telecommunication and switching applications,” Mol. Cryst. Liq. Cryst. 227, 71–84 (1993).
[CrossRef]

Sov. J. Quantum Electron. (1)

O. A. Vlasenko, E. M. Zolotov, R. F. Tavlykaev, “Method for measuring losses in channel waveguides,” Sov. J. Quantum Electron. 19, 681–682 (1989).
[CrossRef]

Other (3)

I. M. Ward, Mechanical Properties of Solid Polymers (Wiley, New York, 1982), pp. 442–456.

J. P. Berry, I. Wolock, S. B. Newman, in Fracture Processes in Polymeric Solids, B. Rosen, ed. (Wiley, New York, 1984), pp. 195–290.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, New York, 1982), pp. 83–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental apparatus used in determination of the optical losses in channel waveguide by the CB and the OEC methods.

Fig. 2
Fig. 2

Insertion loss versus waveguide length determined by the CB (▲) and the OEC (▼) methods, respectively, in a poled polymer channel waveguide.

Fig. 3
Fig. 3

Scanning electron microscope photograph of waveguide end face at tilted view after cleaving.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

LCB=Lpx+Lc,
LOEC=Lpx+Lc+Lsys,
Lc=LFR+LMM+LS,
Lc=LFR+LS,
κ=κo4w/a2w/a2+εw/a2+1/ε,

Metrics