Abstract

The scattering behavior of the all-dielectric twin-cavity narrow-band interference filter is studied both in theory and in experiment in two cases, l1 = l2 and l1l2, where l1 and l2 are the optical thicknesses of the two cavities. It has been shown that the scattering properties are determined mainly by the spacers in which the electric-field intensities are large because of the presence of large standing-wave fields. The scattered light cones are found on both sides of the filter illuminated by a monochromatic light of which the wavelength (λL) is shorter than the peak wavelength (λ0′) of the filter. The scattering angle of each cone is equal to the tilted angle of the filter when the peak wavelength of the filter shifts to the illumination wavelength. For the case l1l2, the distributions of the scattered light on both sides of the filter are quite different. The analytical calculations are in good agreement with experimental results. The possible applications of scattering in the twin-cavity filter in determining the bandwidth of the peak transmittance and the optical thicknesses of two spacers are addressed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription