Abstract

We describe a liquid-core optical fiber based on capillary tubing of Teflon AF 2400, which is a clear, amorphous fluoropolymer having a refractive index of 1.29. When filled with virtually any transparent liquid, the fiber is capable of transmitting light by total internal reflection. Loss below 3 dB/m is demonstrated throughout much of the visible region for a 250-mm-i.d. fiber filled with water. The utility of this device in enhancing the intensity of Raman spectra of core liquids is demonstrated.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hecht, City of Light (Oxford University Press, New York, 1998).
  2. D. Colladon, “Sur les réflexions d’un rayon de lumière à l’interieur d’une veine liquide parabolique,” C. R. Acad. Sci. 15, 800–802 (1842).
  3. W. B. Allan, Fiber Optics Theory and Practice (Plenum, London, 1973).
  4. D. Napoli, “The luminous fountains at the French exposition,” Sci. Am. 61, 376–377 (1889).
  5. J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
    [CrossRef]
  6. W. A. Gambling, D. N. Payne, H. Matsumura, “Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide,” Opt. Commun. 6, 317–322 (1972).
    [CrossRef]
  7. G. J. Ogilvie, R. J. Esdaile, G. P. Kidd, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
    [CrossRef]
  8. T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
    [CrossRef]
  9. E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
    [CrossRef]
  10. G. E. Walrafen, J. Stone, “Intensification of spontaneous Raman spectra by use of liquid core optical fibers,” Appl. Spectrosc. 26, 585–589 (1972).
    [CrossRef]
  11. K. Fuwa, W. Lei, K. Fujiwara, “Colorimetry with a total-reflection long capillary cell,” Anal. Chem. 56, 1640–1644 (1984).
    [CrossRef]
  12. K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
    [CrossRef] [PubMed]
  13. G. S. He, M. Casstevens, R. Burzynski, X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995).
    [CrossRef] [PubMed]
  14. P. K. Dasgupta, “Multipath cells for extending dynamic range of optical absorbance measurements,” Anal. Chem. 56, 1401–1403 (1984).
    [CrossRef]
  15. W. Lei, K. Fujiwara, K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
    [CrossRef]
  16. K. Tsunoda, A. Nomura, J. Yamada, S. Nishi, “Long capillary cell with the use of successive total reflection at outer cell surface for liquid absorption spectrometry,” Anal. Sci. 4, 321–323 (1988).
    [CrossRef]
  17. K. Tsunoda, A. Nomura, J. Yamada, S. Nishi, “The possibility of signal enhancement in liquid absorption spectrometry with a long capillary cell utilizing successive total reflection at the outer cell surface,” Appl. Spectrosc. 43, 49–55 (1989).
    [CrossRef]
  18. T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
    [CrossRef]
  19. K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
    [CrossRef]
  20. S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
    [CrossRef]
  21. S. D. Schwab, R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. 41, 126–130 (1987).
    [CrossRef]
  22. V. Benoit, M. C. Yappert, “Characterization of a simple Raman capillary/fiber optical sensor,” Anal. Chem. 68, 2255–2258 (1996).
    [CrossRef] [PubMed]
  23. V. Benoit, M. C. Yappert, “Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors,” Anal. Chem. 68, 183–188 (1996).
    [CrossRef] [PubMed]
  24. A. A. Abbas, D. C. Shelly, “Optical properties of axial illumination flow cells for simultaneous absorbance–fluorescence detection in micro liquid chromatography,” J. Chromatogr. A 691, 37–53 (1995) and references therein.
    [CrossRef]
  25. E. S. Yeung, “Optical detectors for capillary electrophoresis,” Adv. Chromatogr. 35, 1–51 (1995) and references therein.
  26. A. C. Gilby, W. W. Carson, “Photometric apparatus with a flow cell coated with an amorphous fluoropolymer,” U.S. Patent5,184,192 (2February1993).
  27. P. Dress, H. Franke, “An optical fiber with a liquid H2O core,” in Integrated Optics and Microstructures III, M. Tabib-Aziz, ed., Proc. SPIE2686, 157–163 (1996).
    [CrossRef]
  28. P. Dress, H. Franke, “A cylindrical liquid-core waveguide,” Appl. Phys. B 63, 12–19 (1996).
    [CrossRef]
  29. P. Dress, H. Franke, “Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide,” Rev. Sci. Instrum. 68, 2167–2171 (1997).
    [CrossRef]
  30. K. Hong, L. W. Burgess, “Liquid-core waveguides for chemical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors VI, R. A. Lieberman, ed., Proc. SPIE2293, 71–79 (1994).
    [CrossRef]
  31. R. Altkorn, I. Koev, A. Gottlieb, “Waveguide capillary cell for low-refractive-index liquids,” to be published in Appl. Spectrosc.
  32. Du Pont Teflon/Tefzel Technical Information Brochure E-66815-2, Wilmington, Del.
  33. Du Pont Teflon FEP Product and Properties Handbook H-37052-2, Wilmington, Del.
  34. K. Tsunoda, A. Nomura, J. Yamada, S. Nishi, “The use of poly(tetrafluoroethylene-co-hexafluoropropylene) tubing as a waveguide capillary cell for liquid absorption spectrometry,” Appl. Spectrosc. 44, 163–165 (1990).
    [CrossRef]
  35. W. H. Buck, P. R. Resnick, “Properties of amorphous fluoropolymers based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole,” paper presented at 183rd meeting of the Electrochemical Society, Honolulu, Hawaii, 17 May 1993, DuPont Product Bulletin H52454 (Du Pont, Wilmington, Del., 1993).
  36. W. Groh, A. Zimmerman, “What is the lowest refractive index of an organic polymer?” Macromolecules 24, 6660–6663 (1991).
    [CrossRef]
  37. Jobin Yvon/Spex, “Matching a Spectrometer to a Light Source,” in Guide for Spectroscopy, (Jobin Yvon/Spex, Edison, NJ, 1994), pp. 6–12.
  38. R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Nondestructive method for attenuation measurements in optical hollow waveguides,” Opt. Lett. 20, 1536–1537 (1995).
    [CrossRef] [PubMed]
  39. M. R. Querry, P. G. Cary, R. C. Waring, “Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region,” Appl. Opt. 17, 3587–3592 (1978).
    [CrossRef] [PubMed]
  40. L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef] [PubMed]
  41. J. Ma, Y. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527–2533 (1996).
    [CrossRef] [PubMed]

1997 (1)

P. Dress, H. Franke, “Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide,” Rev. Sci. Instrum. 68, 2167–2171 (1997).
[CrossRef]

1996 (5)

P. Dress, H. Franke, “A cylindrical liquid-core waveguide,” Appl. Phys. B 63, 12–19 (1996).
[CrossRef]

J. Ma, Y. Li, “Fiber Raman background study and its application in setting up optical fiber Raman probes,” Appl. Opt. 35, 2527–2533 (1996).
[CrossRef] [PubMed]

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

V. Benoit, M. C. Yappert, “Characterization of a simple Raman capillary/fiber optical sensor,” Anal. Chem. 68, 2255–2258 (1996).
[CrossRef] [PubMed]

V. Benoit, M. C. Yappert, “Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors,” Anal. Chem. 68, 183–188 (1996).
[CrossRef] [PubMed]

1995 (4)

A. A. Abbas, D. C. Shelly, “Optical properties of axial illumination flow cells for simultaneous absorbance–fluorescence detection in micro liquid chromatography,” J. Chromatogr. A 691, 37–53 (1995) and references therein.
[CrossRef]

E. S. Yeung, “Optical detectors for capillary electrophoresis,” Adv. Chromatogr. 35, 1–51 (1995) and references therein.

R. Dahan, J. Dror, A. Inberg, N. Croitoru, “Nondestructive method for attenuation measurements in optical hollow waveguides,” Opt. Lett. 20, 1536–1537 (1995).
[CrossRef] [PubMed]

G. S. He, M. Casstevens, R. Burzynski, X. Li, “Broadband, multiwavelength stimulated-emission source based on stimulated Kerr and Raman scattering in a liquid-core fiber system,” Appl. Opt. 34, 444–454 (1995).
[CrossRef] [PubMed]

1993 (1)

1991 (2)

W. Groh, A. Zimmerman, “What is the lowest refractive index of an organic polymer?” Macromolecules 24, 6660–6663 (1991).
[CrossRef]

T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
[CrossRef]

1990 (1)

1989 (1)

1988 (2)

K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
[CrossRef] [PubMed]

K. Tsunoda, A. Nomura, J. Yamada, S. Nishi, “Long capillary cell with the use of successive total reflection at outer cell surface for liquid absorption spectrometry,” Anal. Sci. 4, 321–323 (1988).
[CrossRef]

1987 (1)

1984 (3)

K. Fuwa, W. Lei, K. Fujiwara, “Colorimetry with a total-reflection long capillary cell,” Anal. Chem. 56, 1640–1644 (1984).
[CrossRef]

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

P. K. Dasgupta, “Multipath cells for extending dynamic range of optical absorbance measurements,” Anal. Chem. 56, 1401–1403 (1984).
[CrossRef]

1983 (1)

W. Lei, K. Fujiwara, K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
[CrossRef]

1979 (1)

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

1978 (1)

1972 (4)

G. E. Walrafen, J. Stone, “Intensification of spontaneous Raman spectra by use of liquid core optical fibers,” Appl. Spectrosc. 26, 585–589 (1972).
[CrossRef]

J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
[CrossRef]

W. A. Gambling, D. N. Payne, H. Matsumura, “Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide,” Opt. Commun. 6, 317–322 (1972).
[CrossRef]

G. J. Ogilvie, R. J. Esdaile, G. P. Kidd, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

1970 (1)

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

1889 (1)

D. Napoli, “The luminous fountains at the French exposition,” Sci. Am. 61, 376–377 (1889).

1842 (1)

D. Colladon, “Sur les réflexions d’un rayon de lumière à l’interieur d’une veine liquide parabolique,” C. R. Acad. Sci. 15, 800–802 (1842).

Abbas, A. A.

A. A. Abbas, D. C. Shelly, “Optical properties of axial illumination flow cells for simultaneous absorbance–fluorescence detection in micro liquid chromatography,” J. Chromatogr. A 691, 37–53 (1995) and references therein.
[CrossRef]

Aiken, J. H.

T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
[CrossRef]

Allan, W. B.

W. B. Allan, Fiber Optics Theory and Practice (Plenum, London, 1973).

Altkorn, R.

R. Altkorn, I. Koev, A. Gottlieb, “Waveguide capillary cell for low-refractive-index liquids,” to be published in Appl. Spectrosc.

Benoit, V.

V. Benoit, M. C. Yappert, “Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors,” Anal. Chem. 68, 183–188 (1996).
[CrossRef] [PubMed]

V. Benoit, M. C. Yappert, “Characterization of a simple Raman capillary/fiber optical sensor,” Anal. Chem. 68, 2255–2258 (1996).
[CrossRef] [PubMed]

Buck, W. H.

W. H. Buck, P. R. Resnick, “Properties of amorphous fluoropolymers based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole,” paper presented at 183rd meeting of the Electrochemical Society, Honolulu, Hawaii, 17 May 1993, DuPont Product Bulletin H52454 (Du Pont, Wilmington, Del., 1993).

Burgess, L. W.

K. Hong, L. W. Burgess, “Liquid-core waveguides for chemical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors VI, R. A. Lieberman, ed., Proc. SPIE2293, 71–79 (1994).
[CrossRef]

Burzynski, R.

Carson, W. W.

A. C. Gilby, W. W. Carson, “Photometric apparatus with a flow cell coated with an amorphous fluoropolymer,” U.S. Patent5,184,192 (2February1993).

Cary, P. G.

Casstevens, M.

Chylek, P.

Colladon, D.

D. Colladon, “Sur les réflexions d’un rayon de lumière à l’interieur d’une veine liquide parabolique,” C. R. Acad. Sci. 15, 800–802 (1842).

Croitoru, N.

Dahan, R.

Dasgupta, P. K.

P. K. Dasgupta, “Multipath cells for extending dynamic range of optical absorbance measurements,” Anal. Chem. 56, 1401–1403 (1984).
[CrossRef]

Dress, P.

P. Dress, H. Franke, “Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide,” Rev. Sci. Instrum. 68, 2167–2171 (1997).
[CrossRef]

P. Dress, H. Franke, “A cylindrical liquid-core waveguide,” Appl. Phys. B 63, 12–19 (1996).
[CrossRef]

P. Dress, H. Franke, “An optical fiber with a liquid H2O core,” in Integrated Optics and Microstructures III, M. Tabib-Aziz, ed., Proc. SPIE2686, 157–163 (1996).
[CrossRef]

Dror, J.

Esdaile, R. J.

G. J. Ogilvie, R. J. Esdaile, G. P. Kidd, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

Franke, H.

P. Dress, H. Franke, “Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide,” Rev. Sci. Instrum. 68, 2167–2171 (1997).
[CrossRef]

P. Dress, H. Franke, “A cylindrical liquid-core waveguide,” Appl. Phys. B 63, 12–19 (1996).
[CrossRef]

P. Dress, H. Franke, “An optical fiber with a liquid H2O core,” in Integrated Optics and Microstructures III, M. Tabib-Aziz, ed., Proc. SPIE2686, 157–163 (1996).
[CrossRef]

Fujiwara, K.

K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
[CrossRef] [PubMed]

K. Fuwa, W. Lei, K. Fujiwara, “Colorimetry with a total-reflection long capillary cell,” Anal. Chem. 56, 1640–1644 (1984).
[CrossRef]

W. Lei, K. Fujiwara, K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
[CrossRef]

Fuwa, K.

K. Fuwa, W. Lei, K. Fujiwara, “Colorimetry with a total-reflection long capillary cell,” Anal. Chem. 56, 1640–1644 (1984).
[CrossRef]

W. Lei, K. Fujiwara, K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
[CrossRef]

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, “Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide,” Opt. Commun. 6, 317–322 (1972).
[CrossRef]

Gilby, A. C.

A. C. Gilby, W. W. Carson, “Photometric apparatus with a flow cell coated with an amorphous fluoropolymer,” U.S. Patent5,184,192 (2February1993).

Gottlieb, A.

R. Altkorn, I. Koev, A. Gottlieb, “Waveguide capillary cell for low-refractive-index liquids,” to be published in Appl. Spectrosc.

Groh, W.

W. Groh, A. Zimmerman, “What is the lowest refractive index of an organic polymer?” Macromolecules 24, 6660–6663 (1991).
[CrossRef]

Harrington, J. A.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Hartwick, R. A.

T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
[CrossRef]

He, G. S.

Hecht, J.

J. Hecht, City of Light (Oxford University Press, New York, 1998).

Hong, K.

K. Hong, L. W. Burgess, “Liquid-core waveguides for chemical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors VI, R. A. Lieberman, ed., Proc. SPIE2293, 71–79 (1994).
[CrossRef]

Hosaka, T.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Huie, C. W.

T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
[CrossRef]

Inberg, A.

Ippen, E. P.

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Kidd, G. P.

G. J. Ogilvie, R. J. Esdaile, G. P. Kidd, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

Koev, I.

R. Altkorn, I. Koev, A. Gottlieb, “Waveguide capillary cell for low-refractive-index liquids,” to be published in Appl. Spectrosc.

Kou, L.

Labrie, D.

Lei, W.

K. Fuwa, W. Lei, K. Fujiwara, “Colorimetry with a total-reflection long capillary cell,” Anal. Chem. 56, 1640–1644 (1984).
[CrossRef]

W. Lei, K. Fujiwara, K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
[CrossRef]

Li, X.

Li, Y.

Ma, J.

Matsumura, H.

W. A. Gambling, D. N. Payne, H. Matsumura, “Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide,” Opt. Commun. 6, 317–322 (1972).
[CrossRef]

Matsuura, K.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Matsuura, Y.

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

McCreery, R. L.

S. D. Schwab, R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. 41, 126–130 (1987).
[CrossRef]

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Miya, T.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Miyashita, T.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Napoli, D.

D. Napoli, “The luminous fountains at the French exposition,” Sci. Am. 61, 376–377 (1889).

Nishi, S.

Nomura, A.

Ogilvie, G. J.

G. J. Ogilvie, R. J. Esdaile, G. P. Kidd, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, “Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide,” Opt. Commun. 6, 317–322 (1972).
[CrossRef]

Querry, M. R.

Resnick, P. R.

W. H. Buck, P. R. Resnick, “Properties of amorphous fluoropolymers based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole,” paper presented at 183rd meeting of the Electrochemical Society, Honolulu, Hawaii, 17 May 1993, DuPont Product Bulletin H52454 (Du Pont, Wilmington, Del., 1993).

Schwab, S. D.

S. D. Schwab, R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. 41, 126–130 (1987).
[CrossRef]

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Shelly, D. C.

A. A. Abbas, D. C. Shelly, “Optical properties of axial illumination flow cells for simultaneous absorbance–fluorescence detection in micro liquid chromatography,” J. Chromatogr. A 691, 37–53 (1995) and references therein.
[CrossRef]

Simeonsson, J. B.

K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
[CrossRef] [PubMed]

Smith, B. W.

K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
[CrossRef] [PubMed]

Stone, J.

Terunuma, Y.

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

Tsunoda, K.

Walrafen, G. E.

Wang, T.

T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
[CrossRef]

Waring, R. C.

Winefordner, J. D.

K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
[CrossRef] [PubMed]

Yamada, J.

Yappert, M. C.

V. Benoit, M. C. Yappert, “Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors,” Anal. Chem. 68, 183–188 (1996).
[CrossRef] [PubMed]

V. Benoit, M. C. Yappert, “Characterization of a simple Raman capillary/fiber optical sensor,” Anal. Chem. 68, 2255–2258 (1996).
[CrossRef] [PubMed]

Yeung, E. S.

E. S. Yeung, “Optical detectors for capillary electrophoresis,” Adv. Chromatogr. 35, 1–51 (1995) and references therein.

Zimmerman, A.

W. Groh, A. Zimmerman, “What is the lowest refractive index of an organic polymer?” Macromolecules 24, 6660–6663 (1991).
[CrossRef]

Adv. Chromatogr. (1)

E. S. Yeung, “Optical detectors for capillary electrophoresis,” Adv. Chromatogr. 35, 1–51 (1995) and references therein.

Anal. Chem. (8)

K. Fuwa, W. Lei, K. Fujiwara, “Colorimetry with a total-reflection long capillary cell,” Anal. Chem. 56, 1640–1644 (1984).
[CrossRef]

K. Fujiwara, J. B. Simeonsson, B. W. Smith, J. D. Winefordner, “Waveguide capillary flow cell for fluorometry,” Anal. Chem. 60, 1065–1068 (1988).
[CrossRef] [PubMed]

P. K. Dasgupta, “Multipath cells for extending dynamic range of optical absorbance measurements,” Anal. Chem. 56, 1401–1403 (1984).
[CrossRef]

W. Lei, K. Fujiwara, K. Fuwa, “Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry,” Anal. Chem. 55, 951–955 (1983).
[CrossRef]

T. Wang, J. H. Aiken, C. W. Huie, R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis,” Anal. Chem. 63, 1372–1376 (1991).
[CrossRef]

S. D. Schwab, R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

V. Benoit, M. C. Yappert, “Characterization of a simple Raman capillary/fiber optical sensor,” Anal. Chem. 68, 2255–2258 (1996).
[CrossRef] [PubMed]

V. Benoit, M. C. Yappert, “Effect of capillary properties on the sensitivity enhancement in capillary/fiber optical sensors,” Anal. Chem. 68, 183–188 (1996).
[CrossRef] [PubMed]

Anal. Sci. (1)

K. Tsunoda, A. Nomura, J. Yamada, S. Nishi, “Long capillary cell with the use of successive total reflection at outer cell surface for liquid absorption spectrometry,” Anal. Sci. 4, 321–323 (1988).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

P. Dress, H. Franke, “A cylindrical liquid-core waveguide,” Appl. Phys. B 63, 12–19 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

J. Stone, “Optical transmission in liquid-core quartz fibers,” Appl. Phys. Lett. 20, 239–240 (1972).
[CrossRef]

E. P. Ippen, “Low-power quasi-cw Raman oscillator,” Appl. Phys. Lett. 16, 303–305 (1970).
[CrossRef]

Appl. Spectrosc. (4)

C. R. Acad. Sci. (1)

D. Colladon, “Sur les réflexions d’un rayon de lumière à l’interieur d’une veine liquide parabolique,” C. R. Acad. Sci. 15, 800–802 (1842).

Electron. Lett. (2)

G. J. Ogilvie, R. J. Esdaile, G. P. Kidd, “Transmission loss of tetrachloroethylene-filled liquid-core-fibre light guide,” Electron. Lett. 8, 533–534 (1972).
[CrossRef]

T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita, “Ultimate low loss single-mode fibre at 1.55 microns,” Electron. Lett. 15, 106–108 (1979).
[CrossRef]

J. Chromatogr. A (1)

A. A. Abbas, D. C. Shelly, “Optical properties of axial illumination flow cells for simultaneous absorbance–fluorescence detection in micro liquid chromatography,” J. Chromatogr. A 691, 37–53 (1995) and references therein.
[CrossRef]

Macromolecules (1)

W. Groh, A. Zimmerman, “What is the lowest refractive index of an organic polymer?” Macromolecules 24, 6660–6663 (1991).
[CrossRef]

Opt. Commun. (1)

W. A. Gambling, D. N. Payne, H. Matsumura, “Gigahertz bandwidths in multimode, liquid-core, optical fibre waveguide,” Opt. Commun. 6, 317–322 (1972).
[CrossRef]

Opt. Eng. (1)

K. Matsuura, Y. Matsuura, J. A. Harrington, “Evaluation of gold, silver, and dielectric-coated hollow glass waveguides,” Opt. Eng. 35, 3418–3421 (1996).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

P. Dress, H. Franke, “Increasing the accuracy of liquid analysis and pH-value control using a liquid-core waveguide,” Rev. Sci. Instrum. 68, 2167–2171 (1997).
[CrossRef]

Sci. Am. (1)

D. Napoli, “The luminous fountains at the French exposition,” Sci. Am. 61, 376–377 (1889).

Other (10)

J. Hecht, City of Light (Oxford University Press, New York, 1998).

W. B. Allan, Fiber Optics Theory and Practice (Plenum, London, 1973).

K. Hong, L. W. Burgess, “Liquid-core waveguides for chemical sensing,” in Chemical, Biochemical, and Environmental Fiber Sensors VI, R. A. Lieberman, ed., Proc. SPIE2293, 71–79 (1994).
[CrossRef]

R. Altkorn, I. Koev, A. Gottlieb, “Waveguide capillary cell for low-refractive-index liquids,” to be published in Appl. Spectrosc.

Du Pont Teflon/Tefzel Technical Information Brochure E-66815-2, Wilmington, Del.

Du Pont Teflon FEP Product and Properties Handbook H-37052-2, Wilmington, Del.

W. H. Buck, P. R. Resnick, “Properties of amorphous fluoropolymers based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole,” paper presented at 183rd meeting of the Electrochemical Society, Honolulu, Hawaii, 17 May 1993, DuPont Product Bulletin H52454 (Du Pont, Wilmington, Del., 1993).

Jobin Yvon/Spex, “Matching a Spectrometer to a Light Source,” in Guide for Spectroscopy, (Jobin Yvon/Spex, Edison, NJ, 1994), pp. 6–12.

A. C. Gilby, W. W. Carson, “Photometric apparatus with a flow cell coated with an amorphous fluoropolymer,” U.S. Patent5,184,192 (2February1993).

P. Dress, H. Franke, “An optical fiber with a liquid H2O core,” in Integrated Optics and Microstructures III, M. Tabib-Aziz, ed., Proc. SPIE2686, 157–163 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Loss spectra of water (solid curve) and methanol (dashed curve) in a Teflon-AF 2400 capillary and in bulk water (dotted curve) from the data of Querry et al.39 (between 418 and 640 nm) and Kou et al.40 (between 667 and 800 nm).

Fig. 2
Fig. 2

Attenuation versus length in a Teflon-AF 2400 capillary filled with methanol (three sets of measurements). Solid lines show the least-squares fit to data between 0–0.45 and 0.55–0.75 m and indicate losses of 1.9 and 1.4 dB/m, respectively, in these regions.

Fig. 3
Fig. 3

Attenuation versus length in a Teflon-AF 2400 capillary filled with ethanol (three sets of measurements). Solid lines show the least-squares fit to data between 0–0.45 and 0.55–0.75 m and indicate losses of 1.7 and 0.8 dB/m, respectively, in these regions.

Fig. 4
Fig. 4

Attenuation versus length in a Teflon-AF 2400 capillary filled with 1-propanol (three sets of measurements). Solid lines show the least-squares fit to data between 0–0.45 and 0.55–0.75 m and indicate losses of 1.6 and 0.9 dB/m, respectively, in these regions.

Fig. 5
Fig. 5

Forward-scattered Raman spectrum of acetonitrile in a 250-µm i.d. Teflon AF 2400 capillary acquired with 350 µm of 514.5-nm input radiation.

Fig. 6
Fig. 6

Raman spectrum of acetonitrile in a conventional sampling arrangement acquired with 100 mW of 514.5-nm input radiation.

Fig. 7
Fig. 7

Normalized Raman intensity at 2253 cm-1 CN band of acetonitrile versus cell length (three sets of measurements) and best fit to the model of Walrafen and Stone10 (see text).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

loss ( dB / m ) = 10 L log 10 I 1 I 2 ,
attenuation ( dB ) = 10   log 10 I 0 I ,
I R = K x   exp ( - α x ) ,

Metrics