Abstract

Two-beam and three-beam vector interference in thin photoresist films is used to illustrate the striking differences between s-polarized and p-polarized high-numerical-aperture illumination. Both simulations and experiments are performed for several cases, including undyed photoresist on silicon, dyed photoresist on silicon, and the addition of an antireflective layer between the photoresist and the silicon. A 0.85 numerical-aperture system is examined. The major differences between s- and p-polarized illumination include elliptical versus rectangular features and lower contrast for p-polarized images.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
    [CrossRef]
  2. D. G. Flagello, A. E. Rosenbluth, “Vector diffraction analysis of phase-mask imaging in photoresist films,” in Optical/Laser Microlithography, J. D. Cuthbert, ed., Proc. SPIE1927, 395–412 (1993).
    [CrossRef]
  3. D. G. Flagello, T. Milster, A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
    [CrossRef]
  4. D. G. Flagello, “High numerical aperture imaging in homogeneous thin films,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1993).
  5. Y. Uetani, M. Hanabata, A. Furuta, “Observation of internal structure of a positive photoresist image using cross-sectional exposure method,” J. Vac. Sci. Technol. B 7, 569–571 (1989).
    [CrossRef]
  6. D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
    [CrossRef]

1996 (1)

1992 (2)

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
[CrossRef]

1989 (1)

Y. Uetani, M. Hanabata, A. Furuta, “Observation of internal structure of a positive photoresist image using cross-sectional exposure method,” J. Vac. Sci. Technol. B 7, 569–571 (1989).
[CrossRef]

Flagello, D. G.

D. G. Flagello, T. Milster, A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

D. G. Flagello, “High numerical aperture imaging in homogeneous thin films,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1993).

D. G. Flagello, A. E. Rosenbluth, “Vector diffraction analysis of phase-mask imaging in photoresist films,” in Optical/Laser Microlithography, J. D. Cuthbert, ed., Proc. SPIE1927, 395–412 (1993).
[CrossRef]

Furuta, A.

Y. Uetani, M. Hanabata, A. Furuta, “Observation of internal structure of a positive photoresist image using cross-sectional exposure method,” J. Vac. Sci. Technol. B 7, 569–571 (1989).
[CrossRef]

Grenville, A.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

Hanabata, M.

Y. Uetani, M. Hanabata, A. Furuta, “Observation of internal structure of a positive photoresist image using cross-sectional exposure method,” J. Vac. Sci. Technol. B 7, 569–571 (1989).
[CrossRef]

Hsieh, R. L.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

LaTulipe, D. C.

D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
[CrossRef]

Markle, D. A.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

Mauluf, N. I.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

Milster, T.

Owen, G.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

Pease, R. F. W.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

Pomerene, A. T. S.

D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
[CrossRef]

Rosenbluth, A. E.

D. G. Flagello, T. Milster, A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
[CrossRef]

D. G. Flagello, A. E. Rosenbluth, “Vector diffraction analysis of phase-mask imaging in photoresist films,” in Optical/Laser Microlithography, J. D. Cuthbert, ed., Proc. SPIE1927, 395–412 (1993).
[CrossRef]

Seeger, D. E.

D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
[CrossRef]

Simmons, J. P.

D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
[CrossRef]

Uetani, Y.

Y. Uetani, M. Hanabata, A. Furuta, “Observation of internal structure of a positive photoresist image using cross-sectional exposure method,” J. Vac. Sci. Technol. B 7, 569–571 (1989).
[CrossRef]

von Bünau, R.

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (2)

G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bünau, N. I. Mauluf, “1/8 µm optical lithography,” J. Vac. Sci. Technol. B 10, 3032–3036 (1992).
[CrossRef]

Y. Uetani, M. Hanabata, A. Furuta, “Observation of internal structure of a positive photoresist image using cross-sectional exposure method,” J. Vac. Sci. Technol. B 7, 569–571 (1989).
[CrossRef]

Microelectron. Eng. (1)

D. C. LaTulipe, A. T. S. Pomerene, J. P. Simmons, D. E. Seeger, “Positive mode silylation process characterization,” Microelectron. Eng. 17, 265–268 (1992).
[CrossRef]

Other (2)

D. G. Flagello, A. E. Rosenbluth, “Vector diffraction analysis of phase-mask imaging in photoresist films,” in Optical/Laser Microlithography, J. D. Cuthbert, ed., Proc. SPIE1927, 395–412 (1993).
[CrossRef]

D. G. Flagello, “High numerical aperture imaging in homogeneous thin films,” Ph.D. dissertation (University of Arizona, Tucson, Ariz., 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Propagation vectors incident on film assembly for two-beam interference.

Fig. 3
Fig. 3

Characteristic curves of undyed and dyed photoresist.

Fig. 4
Fig. 4

(a) SEM results for configuration 1: undyed photoresist over Si with s polarization; (b) simulation with isoexposure contours of 20-, 25-, and 30-J/cm3 levels.

Fig. 5
Fig. 5

(a) SEM results for configuration 1: undyed photoresist over Si with p polarization; (b) simulation with isoexposure contours of 20-, 25-, and 30-J/cm3 levels.

Fig. 6
Fig. 6

(a) SEM results for configuration 2: dyed photoresist over Si; (b) simulation of exposure with parameters in Table 2: isoexposure contours with 100-, 150-, and 300-J/cm3 levels.

Fig. 7
Fig. 7

(a) SEM results for configuration 3: addition of an oxide layer under the photoresist; (b) simulation at exposure with the parameters in Table 2: isoexposure contours with 20-, 25-, and 30-J/cm3 levels.

Fig. 8
Fig. 8

(a) SEM results for configuration 4: dyed photoresist over C over Si; (b) simulation of exposure for the parameters in Table 2: isoexposure contours with 100-, 150-, and 200-J/cm3 levels.

Fig. 9
Fig. 9

(a) SEM results for configuration 5: undyed photoresist over Si; (b) simulation of exposure with z0 = 0 and parameters in Table 2: isoexposure contours with 20-, 25-, and 30-J/cm3 levels.

Fig. 10
Fig. 10

(a) SEM results for configuration 6: undyed photoresist over Si with z0 = 0; (b) simulation of exposure for the parameters in Table 2: isoexposure contours with 20-, 25-, and 30-J/cm3 levels.

Fig. 11
Fig. 11

(a) SEM results for configuration 6: undyed photoresist over Si, z0 = 0.8 µm; (b) simulation of exposure for the parameters in Table 2: isoexposure contours with 20-, 25-, and 30-J/cm3 levels.

Tables (2)

Tables Icon

Table 1 General Experimental Process

Tables Icon

Table 2 Experimental Parameters

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Q=k0YnκE2,
I=S=12YE2,
E=2IY.
β=sin θ,  γ=cos θ,  γ=1-β2.
Eyy; z=Ezy; z=0,  Exy; z=c1 cos2πyβFβ; zs,
Fβ; zs=τsτIIsexpiϕ+rIIs exp-iϕ;
ϕ=2πN1d-z+z0γ1;
c1=2a0 exp-i2πγz0;
Qsy; z=k0YnκEsy; z2=k0Ynκc12Fβ; zs2cos22πyβ.
Exy; z=0,  Eyy; z=c1γFβ; zyP cos2πyβ,  Ezy; z=c1iβFβ; zzP sin2πyβ,
Fβ; zyp=τpτIIPexpiϕ+rIIP exp-iϕ,
Fβ; zzp=τpγτIIPnγ1expiϕ-rIIp exp-iϕ.
QPy; z=k0YnκEyy; z2+Ezy; z2=k0Ynκc12Fβ; zyP2y2 cos22πyβ+Fβ; zzP2β2 sin22πyβ.
Qsy; z=k0Ynκc1F0; zs+c2Fβ; zs cos2πyβ2,
c1=a0 exp-i2πz0,  c2=2a1 exp-i2πγz0.
QPy; z=k0Ynκc1F0; zyP+c2γFβ; zyP×cos2πyβ2+c2βFβ; zzP×sin2πyβ2.

Metrics