Abstract

A detector-based absolute scale for spectral irradiance in the 380–900-nm wavelength region has been developed and tested at the Helsinki University of Technology (HUT). Derivation of the scale and its use for photometric and colorimetric measurements are described. A thorough characterization of a filter radiometer, constructed from a reflection trap detector, a precision aperture, and a set of seven temperature-controlled bandpass filters, is presented. A detailed uncertainty analysis of the scale indicates a relative standard uncertainty of approximately 0.2% throughout most of the wavelength region. The standard uncertainties obtained in measurements of correlated color temperature and luminous intensity of three Osram Wi41/G tungsten–halogen lamps are 2 K and 0.3%, respectively. The spectral irradiance scale is compared with the HUT luminous intensity scale. The agreement of the results at the 0.1% level is well within the combined standard uncertainty of the two scales.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
    [CrossRef]
  2. T. Varpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
    [CrossRef]
  3. P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
    [CrossRef] [PubMed]
  4. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
    [CrossRef]
  5. D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 µm,” Metrologia 30, 425–432 (1993).
    [CrossRef]
  6. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4393–4403 (1996).
  7. L. P. Boivin, “Calibration of incandescent lamps for spectral irradiance by means of absolute radiometers,” Appl. Opt. 19, 2771–2780 (1980).
    [CrossRef] [PubMed]
  8. C. Carreras, A. Corrons, “Absolute spectroradiometric and photometric scales based on an electrically calibrated pyroelectric radiometer,” Appl. Opt. 20, 1174–1177 (1981).
    [CrossRef] [PubMed]
  9. R. J. Bruening, “Spectral irradiance scales based on filtered absolute silicon photodetectors,” Appl. Opt. 26, 1051–1057 (1987).
    [CrossRef] [PubMed]
  10. P. Corredera, A. Corróns, A. Pons, J. Campos, “Absolute spectral irradiance scale in the 700–2400-nm spectral range,” Appl. Opt. 29, 3530–3534 (1990).
    [CrossRef] [PubMed]
  11. B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
    [CrossRef]
  12. E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
    [CrossRef]
  13. L. Liedquist, E. Ikonen, P. Kärhä, H. Fagerlund, “Comparison of luminous-intensity scales based on trap detectors and incandescent lamps,” Metrologia 32, 681–684 (1995/1996).
    [CrossRef]
  14. P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
    [CrossRef]
  15. P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
    [CrossRef]
  16. WG. Czibula, E. Krochmann, “Calibration possibilities of luminous intensity and illuminance,” in 14th Symposium on Photonic Measurements, J. Schanda, T. Lippényi, eds. Proc. SPIE1712, pp. 92–99 (1993).
    [CrossRef]
  17. J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (U.S. Government Printing Office, Washington, D.C., 1987).
  18. G. Andor, “New data-reduction method in detector-based spectral-irradiance measurements,” Metrologia 32, 495–496 (1995/1996).
    [CrossRef]
  19. J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
    [CrossRef]
  20. Comission Internationale de l’Eclairage, “Colorimetry,” (CIE, Paris, 1986).
  21. Comission Internationale de l’Eclairage, “The basis of physical photometry,” (CIE, Paris, 1983).
  22. J. W. T. Walsh, Photometry (Dover, New York, 1965).
  23. P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.
  24. Hamamatsu Photodiodes Catalog 1991 (Hamamatsu Photonics K. K., Hamamatsu City, Japan, 1991), p. 4.
  25. M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.
  27. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [CrossRef]
  28. J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
    [CrossRef]
  29. F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
    [CrossRef] [PubMed]
  30. F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV-visible-NIR,” in Proceedings of the Fourteenth International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 108–113.
  31. A. Lassila, E. Ikonen, K. Riski, “Interferometer for calibration of graduated line scales with a moving CCD camera as a line detector,” Appl. Opt. 33, 3600–3603 (1994).
    [CrossRef] [PubMed]
  32. L. P. Boivin, “Environmental corrections in absolute radiometry,” in Absolute Radiometry, F. Hengstberger, ed. (Academic, San Diego, Calif., 1989), pp. 170–180.
    [CrossRef]
  33. A. Lassila, P. Toivanen, E. Ikonen, “An optical method for direct determination of the radiometric aperture area at high accuracy,” Meas. Sci. Technol. 8, 973–977 (1997).
    [CrossRef]

1997 (1)

A. Lassila, P. Toivanen, E. Ikonen, “An optical method for direct determination of the radiometric aperture area at high accuracy,” Meas. Sci. Technol. 8, 973–977 (1997).
[CrossRef]

1996 (2)

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4393–4403 (1996).

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

1995 (2)

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

1994 (1)

1993 (2)

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 µm,” Metrologia 30, 425–432 (1993).
[CrossRef]

1991 (2)

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

1990 (2)

1989 (1)

T. Varpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

1987 (1)

1985 (1)

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

1981 (1)

1980 (1)

1965 (1)

1954 (1)

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
[CrossRef]

Andor, G.

G. Andor, “New data-reduction method in detector-based spectral-irradiance measurements,” Metrologia 32, 495–496 (1995/1996).
[CrossRef]

Boivin, L. P.

L. P. Boivin, “Calibration of incandescent lamps for spectral irradiance by means of absolute radiometers,” Appl. Opt. 19, 2771–2780 (1980).
[CrossRef] [PubMed]

L. P. Boivin, “Environmental corrections in absolute radiometry,” in Absolute Radiometry, F. Hengstberger, ed. (Academic, San Diego, Calif., 1989), pp. 170–180.
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.

Bruening, R. J.

Campos, J.

Carreras, C.

Chandler-Horowitz, D.

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

Corredera, P.

Corrons, A.

Corróns, A.

Cromer, C. L.

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4393–4403 (1996).

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Czibula, WG.

WG. Czibula, E. Krochmann, “Calibration possibilities of luminous intensity and illuminance,” in 14th Symposium on Photonic Measurements, J. Schanda, T. Lippényi, eds. Proc. SPIE1712, pp. 92–99 (1993).
[CrossRef]

De Vos, J. C.

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
[CrossRef]

Dezsi, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Eppeldauer, G.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fagerlund, H.

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

L. Liedquist, E. Ikonen, P. Kärhä, H. Fagerlund, “Comparison of luminous-intensity scales based on trap detectors and incandescent lamps,” Metrologia 32, 681–684 (1995/1996).
[CrossRef]

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Foukal, P. V.

Fowler, J.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Fox, N. P.

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

Geist, J.

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

Gentile, T. R.

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4393–4403 (1996).

Haapalinna, A.

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV-visible-NIR,” in Proceedings of the Fourteenth International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 108–113.

Houston, J. M.

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4393–4403 (1996).

Hoyt, C.

Ikonen, E.

A. Lassila, P. Toivanen, E. Ikonen, “An optical method for direct determination of the radiometric aperture area at high accuracy,” Meas. Sci. Technol. 8, 973–977 (1997).
[CrossRef]

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

L. Liedquist, E. Ikonen, P. Kärhä, H. Fagerlund, “Comparison of luminous-intensity scales based on trap detectors and incandescent lamps,” Metrologia 32, 681–684 (1995/1996).
[CrossRef]

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

A. Lassila, E. Ikonen, K. Riski, “Interferometer for calibration of graduated line scales with a moving CCD camera as a line detector,” Appl. Opt. 33, 3600–3603 (1994).
[CrossRef] [PubMed]

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV-visible-NIR,” in Proceedings of the Fourteenth International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 108–113.

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Jackson, J. K.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (U.S. Government Printing Office, Washington, D.C., 1987).

James, C. R.

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

Johnson, B. C.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Jokela, K.

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Kärhä, P.

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

L. Liedquist, E. Ikonen, P. Kärhä, H. Fagerlund, “Comparison of luminous-intensity scales based on trap detectors and incandescent lamps,” Metrologia 32, 681–684 (1995/1996).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Key, P. J.

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

Kochling, H.

Köhler, R.

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

Krochmann, E.

WG. Czibula, E. Krochmann, “Calibration possibilities of luminous intensity and illuminance,” in 14th Symposium on Photonic Measurements, J. Schanda, T. Lippényi, eds. Proc. SPIE1712, pp. 92–99 (1993).
[CrossRef]

Lassila, A.

A. Lassila, P. Toivanen, E. Ikonen, “An optical method for direct determination of the radiometric aperture area at high accuracy,” Meas. Sci. Technol. 8, 973–977 (1997).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

A. Lassila, E. Ikonen, K. Riski, “Interferometer for calibration of graduated line scales with a moving CCD camera as a line detector,” Appl. Opt. 33, 3600–3603 (1994).
[CrossRef] [PubMed]

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Leszczynski, K.

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Liedquist, L.

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

L. Liedquist, E. Ikonen, P. Kärhä, H. Fagerlund, “Comparison of luminous-intensity scales based on trap detectors and incandescent lamps,” Metrologia 32, 681–684 (1995/1996).
[CrossRef]

Ludvigsen, H.

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Malitson, I. H.

Manoochechri, F.

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Manoochehri, F.

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV-visible-NIR,” in Proceedings of the Fourteenth International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 108–113.

Martin, J. E.

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

McSparron, D. A.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (U.S. Government Printing Office, Washington, D.C., 1987).

Miller, P.

Nettleton, D. H.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 µm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Nyberg, H.

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.

Pons, A.

Prior, T. R.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 µm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Riski, K.

Robinson, A. M.

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

Saari, J.-M.

T. Varpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

Sapritsky, V. I.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

Saunders, R. D.

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (U.S. Government Printing Office, Washington, D.C., 1987).

Seppä, H.

T. Varpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

Toivanen, P.

A. Lassila, P. Toivanen, E. Ikonen, “An optical method for direct determination of the radiometric aperture area at high accuracy,” Meas. Sci. Technol. 8, 973–977 (1997).
[CrossRef]

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Varpula, T.

T. Varpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

Visuri, R.

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Walker, J. H.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (U.S. Government Printing Office, Washington, D.C., 1987).

Walsh, J. W. T.

J. W. T. Walsh, Photometry (Dover, New York, 1965).

Ward, T. H.

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 µm,” Metrologia 30, 425–432 (1993).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.

Appl. Opt. (8)

T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4393–4403 (1996).

L. P. Boivin, “Calibration of incandescent lamps for spectral irradiance by means of absolute radiometers,” Appl. Opt. 19, 2771–2780 (1980).
[CrossRef] [PubMed]

C. Carreras, A. Corrons, “Absolute spectroradiometric and photometric scales based on an electrically calibrated pyroelectric radiometer,” Appl. Opt. 20, 1174–1177 (1981).
[CrossRef] [PubMed]

R. J. Bruening, “Spectral irradiance scales based on filtered absolute silicon photodetectors,” Appl. Opt. 26, 1051–1057 (1987).
[CrossRef] [PubMed]

P. Corredera, A. Corróns, A. Pons, J. Campos, “Absolute spectral irradiance scale in the 700–2400-nm spectral range,” Appl. Opt. 29, 3530–3534 (1990).
[CrossRef] [PubMed]

P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990).
[CrossRef] [PubMed]

F. Manoochehri, E. Ikonen, “High-accuracy spectrometer for measurement of regular spectral transmittance,” Appl. Opt. 34, 3686–3692 (1995).
[CrossRef] [PubMed]

A. Lassila, E. Ikonen, K. Riski, “Interferometer for calibration of graduated line scales with a moving CCD camera as a line detector,” Appl. Opt. 33, 3600–3603 (1994).
[CrossRef] [PubMed]

IEEE Trans. Instrum. Meas. (1)

T. Varpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on a stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989).
[CrossRef]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

A. Lassila, P. Toivanen, E. Ikonen, “An optical method for direct determination of the radiometric aperture area at high accuracy,” Meas. Sci. Technol. 8, 973–977 (1997).
[CrossRef]

Metrologia (8)

J. Geist, D. Chandler-Horowitz, R. Köhler, A. M. Robinson, C. R. James, “Numerical modeling of short-wavelength internal quantum efficiency,” Metrologia 28, 193–196 (1991).
[CrossRef]

J. E. Martin, N. P. Fox, P. J. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985).
[CrossRef]

N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991).
[CrossRef]

D. H. Nettleton, T. R. Prior, T. H. Ward, “Improved spectral responsivity scales at the NPL, 400 nm to 20 µm,” Metrologia 30, 425–432 (1993).
[CrossRef]

B. C. Johnson, C. L. Cromer, R. D. Saunders, G. Eppeldauer, J. Fowler, V. I. Sapritsky, G. Dezsi, “A method of realizing spectral irradiance based on an absolute cryogenic radiometer,” Metrologia 30, 309–315 (1993).
[CrossRef]

E. Ikonen, P. Kärhä, A. Lassila, F. Manoochehri, H. Fagerlund, L. Liedquist, “Radiometric realization of the candela with a trap detector,” Metrologia 32, 689–692 (1995/1996).
[CrossRef]

L. Liedquist, E. Ikonen, P. Kärhä, H. Fagerlund, “Comparison of luminous-intensity scales based on trap detectors and incandescent lamps,” Metrologia 32, 681–684 (1995/1996).
[CrossRef]

G. Andor, “New data-reduction method in detector-based spectral-irradiance measurements,” Metrologia 32, 495–496 (1995/1996).
[CrossRef]

Opt. Eng. (1)

P. Kärhä, H. Fagerlund, A. Lassila, H. Ludvigsen, F. Manoochehri, E. Ikonen, “Optical power and transmittance measurements and their use in detector-based realization of the luminous intensity scale,” Opt. Eng. 34, 2611–2618 (1995).
[CrossRef]

Photochem. Photobiol. (1)

P. Kärhä, R. Visuri, K. Leszczynski, F. Manoochehri, K. Jokela, E. Ikonen, “Detector-based calibration method for high-accuracy solar UV measurements,” Photochem. Photobiol. 64, 340–343 (1996).
[CrossRef]

Physica (1)

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica 20, 690–714 (1954).
[CrossRef]

Other (11)

Comission Internationale de l’Eclairage, “Colorimetry,” (CIE, Paris, 1986).

Comission Internationale de l’Eclairage, “The basis of physical photometry,” (CIE, Paris, 1983).

J. W. T. Walsh, Photometry (Dover, New York, 1965).

P. Toivanen, H. Nyberg, P. Kärhä, A. Lassila, F. Manoochechri, E. Ikonen, “Detector-based realisation of the candela,” in Proceedings of the 14th International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 114–119.

Hamamatsu Photodiodes Catalog 1991 (Hamamatsu Photonics K. K., Hamamatsu City, Japan, 1991), p. 4.

M. Born, E. Wolf, Principles of Optics, 3rd ed. (Pergamon, Oxford, UK, 1965), pp. 40, 632–633.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985), pp. 547–569.

WG. Czibula, E. Krochmann, “Calibration possibilities of luminous intensity and illuminance,” in 14th Symposium on Photonic Measurements, J. Schanda, T. Lippényi, eds. Proc. SPIE1712, pp. 92–99 (1993).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (U.S. Government Printing Office, Washington, D.C., 1987).

F. Manoochehri, A. Haapalinna, E. Ikonen, “High-accuracy measurement of regular spectral transmittance and reflectance in UV-visible-NIR,” in Proceedings of the Fourteenth International Measurement Confederation (IMEKO) World Congress, Vol. 2, J. Halttunen, ed. (Finnish Society of Automation, Helsinki, 1997), pp. 108–113.

L. P. Boivin, “Environmental corrections in absolute radiometry,” in Absolute Radiometry, F. Hengstberger, ed. (Academic, San Diego, Calif., 1989), pp. 170–180.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Filter radiometer used in this study. The trap detector was constructed from three windowless photodiodes arranged in a polarization-independent configuration. Only two of the photodiodes can be seen because the third is behind the body part that keeps the photodiodes together.

Fig. 2
Fig. 2

Principle of the setup for measuring the spectral irradiance of a lamp. The magnetic distance measurement unit may be connected to the base of the filter radiometer or alternatively to the base of the alignment telescope.

Fig. 3
Fig. 3

Measured transmittances of the filters.

Fig. 4
Fig. 4

Transmittance of the 380-nm filter given as optical density. The apparent peak at 452-nm wavelength was the only noticeable leakage found in any filter.

Fig. 5
Fig. 5

Measured reflectance of the 500-nm interference filter.

Fig. 6
Fig. 6

Calculated ε′(λ) values for the lamps (circles) and the polynomial used to interpolate the values (solid curve). The spectral emissivity curve ε(λ) for bare tungsten ribbon19 (dotted curve) has been included to demonstrate the fine structure that may partly limit the accuracy.

Fig. 7
Fig. 7

Measured irradiance values for one of the lamps (circles) and the interpolated spectral irradiance (solid curve) at a distance of 1500 mm. The maximum difference between the spectral irradiance values and the interpolation function is 2.3 × 10-3 and the standard deviation is 1.6 × 10-3.

Tables (4)

Tables Icon

Table 1 Measured Properties of the Filtersa

Tables Icon

Table 2 Measured Irradiance E(λ) at 1500-mm Distance for the three Osram Wi41/G Luminous Intensity Standard Lamps

Tables Icon

Table 3 Operating Current and the Calculated Colorimetric and Photometric Properties of the Lamps

Tables Icon

Table 4 Uncertainty Budget for the Spectral Irradiance Measurements

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

i=AλEλτλRλdλ,
Ecλ=Bελλ5expc2/λT-1,
ελ=i=0Nbiλi,
Emλeff=im/icEcλeff,
λeff=λλEcλτλRλdλλEcλτλRλdλ.
Δ=j=17GjEmλj/Ecλj-12,
ελeff=Emλeff/EBBλeff,
d=u-up2+v-vp21/2
Iν=Kms2λEλVλdλ
IνIβ,
Rλ=1-ρλ1-δλeλhc,

Metrics