Abstract

We report an optical-scanning, dual-fiber, extrinsic Fabry–Perot interferometer system for absolute measurement of microdisplacement. The system involves two air-gapped Fabry–Perot cavities, formed by fiber end faces, functioning as sensing and reference elements. Taking the scanning wavelength as an interconverter to compare the gap length of the sensing head with the reference-cavity length yields the absolute measurement of the sensing-cavity length. The measurement is independent of the wavelength-scanning accuracy, and the reference-cavity length can be self-calibrated simply by one’s changing the sensing-head length by an accurate value.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, D. A. Jackson, M. Corko, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
    [CrossRef]
  2. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors,” Opt. Lett. 16, 273–275 (1991).
    [CrossRef] [PubMed]
  3. T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position–distance measurement,” Opt. Lett. 20, 785–787 (1995).
    [CrossRef] [PubMed]
  4. C. Belleville, G. Duplain, “White-light interferometric multimode fiber-optic strain sensor,” Opt. Lett. 18, 78–80 (1993).
    [CrossRef] [PubMed]
  5. B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.
  6. D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
    [CrossRef]
  7. G. Ball, W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
    [CrossRef]

1995

1994

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

G. Ball, W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

1993

1991

1983

A. D. Kersey, D. A. Jackson, M. Corko, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Ball, G.

G. Ball, W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Belleville, C.

Claus, R.

T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position–distance measurement,” Opt. Lett. 20, 785–787 (1995).
[CrossRef] [PubMed]

B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.

Claus, R. O.

Corko, M.

A. D. Kersey, D. A. Jackson, M. Corko, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Duplain, G.

Fogg, B.

B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.

Grattan, K.

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

Gunther, M. F.

Jackson, D. A.

A. D. Kersey, D. A. Jackson, M. Corko, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Kersey, A. D.

A. D. Kersey, D. A. Jackson, M. Corko, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Li, T.

Miller, M.

B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.

Morey, W.

G. Ball, W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Murphy, K.

T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position–distance measurement,” Opt. Lett. 20, 785–787 (1995).
[CrossRef] [PubMed]

B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.

Murphy, K. A.

Ning, Y.

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

Palmer, A.

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

Vengsarkar, A. M.

Wang, A.

T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position–distance measurement,” Opt. Lett. 20, 785–787 (1995).
[CrossRef] [PubMed]

B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.

Wang, D.

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

Weir, K.

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Wang, Y. Ning, A. Palmer, K. Grattan, K. Weir, “An optical scanning technique in a white light interferometric system,” IEEE Photon. Technol. Lett. 6, 855–857 (1994).
[CrossRef]

G. Ball, W. Morey, “60 mW 1.5 µm single-frequency low-noise fiber laser MOPA,” IEEE Photon. Technol. Lett. 6, 192–194 (1994).
[CrossRef]

Opt. Commun.

A. D. Kersey, D. A. Jackson, M. Corko, “A simple fiber Fabry–Perot sensor,” Opt. Commun. 45, 71–74 (1983).
[CrossRef]

Opt. Lett.

Other

B. Fogg, A. Wang, M. Miller, K. Murphy, R. Claus, “Optical fiber sensor for absolute measurement,” in Fiber Optic Sensor-Based Smart Materials and Structures, R. O. Claus, ed. (Institute of Physics, Bristol, England, 1992), pp. 51–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dual extrinsic FP interferometer (DEFPI). GWS, grating wavelength scanner; C1, C2, C3, couplers; T, translation stage; D1, D2, detectors.

Fig. 2
Fig. 2

Grating wavelength scanner (GWS). L1, L2, GRIN lens; G, grating, P, Galvo scanner shaft.

Fig. 3
Fig. 3

Wavelength-scanning fringes from the DEFPI. The lower trace in each figure is the driving current applied to the Galvo to tune the wavelength, and the upper trace represents the interference fringes versus the wavelength (a) from the reference cavity with a cavity length of 81.4 µm and (b) and (c) from the sensing head with different measured gap lengths.

Fig. 4
Fig. 4

Experimental plot of the ratio of the sensing-gap length over the reference-cavity length versus the reference-cavity length; measured normalized sensor-cavity length versus the readout from the translation stage. The horizontal axis represents the known increments of the sensing length. The reference-cavity length L1 is 81.4 µm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Iλ,L=Ioλ cos2Φs+Φo/2,
ΦS=2knL=4πLn/λ,
ΔΦS=λ1λ2dΦS=4πLλ1λ2-n/λ2dλ=4πLnΔλ/λ1λ2,
ΔΦS2/ΔΦS1=L2/L1.
mi=ΔΦsi/2π=εi+fi,1+fi,2,
L2=L1m2/m1=L1ε2+f2,1+f2,2/ε1+f1,1+f1,2.
f2,1/e2,1=t2,1/t2,1,0.
L1=L2-L2/m2/m1-m2/m1=ΔL2/m2/m1-m2/m1,

Metrics