Abstract

A type of spectrally selective imaging optical detector that is based on resonance ionization in an atomic vapor is proposed. It has the potential for improved spatial, spectral, and temporal resolutions compared with those of available techniques. Figures of merit are calculated and compared with those of existing techniques. Several potential applications such as the imaging of moving objects, ultrasonic fields, high-energy particle detection, and optical communications are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
    [CrossRef]
  2. D. Malonek, A. Grinvald, “Interaction between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping,” Science 272, 551–554 (1996).
    [CrossRef] [PubMed]
  3. H. R. Morris, C. C. Hoyt, P. Miller, P. J. Treado, “Liquid crystal tunable filter Raman imaging,” Appl. Spectrosc. 50, 805–811 (1996).
    [CrossRef]
  4. O. I. Matveev, “Atomic resonance spectrometers and filters,” Zh. Prikl. Spektrosk. (USSR) 46, 359–375 (1987).
  5. E. Korevaar, M. Rivers, C. S. Liu, “Imaging atomic line filter for satellite tracking,” in Space Sensing, Communications, and Networking, M. Ross, R. J. Temkin, eds., Proc. SPIE1059, 111–118 (1989).
    [CrossRef]
  6. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
    [CrossRef]
  7. M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996).
    [CrossRef]
  8. R. L. McKenzie, “Measurement capabilities of planar Doppler velocimety using pulsed lasers,” in Proceedings of the Thirty-Third Aerospace Sciences Meeting and Exhibit, AIAA paper 95-0297 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995).
  9. N. D. Finkelstein, W. R. Lempert, R. B. Miles, “A narrow passband, imaging, refluorescence filter for non-intrusive flow diagnostics,” in Proceedings of the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, AIAA paper 96-2269 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).
  10. N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Cavity locked, injection seeded, titanium: sapphire laser and application to ultra violet flow diagnostics,” in Proceedings of the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, AIAA paper 96-0177 (American Institute Aeronautics and Astronautics, Washington, D.C., 1996).
  11. H. Chen, C. Y. She, P. Searcy, E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019–1021 (1993).
    [CrossRef] [PubMed]
  12. B. Yin, T. M. Shay, “Stark anomalous dispersion optical filter for doubled Nd:YLF lasers,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 455–457 (1994).
    [CrossRef]
  13. L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994).
    [CrossRef]
  14. H. Hemmati, “Laser communication component technologies: database; status and trends,” in Free-Space Laser Communication Technologies VIII, G. Mecherle, ed., Proc. SPIE2699, 310–314 (1996).
    [CrossRef]
  15. H. Chen, M. A. White, D. A. Krueger, C. Y. She, “Daytime mesopause temperature measurement with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
    [CrossRef] [PubMed]
  16. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef] [PubMed]
  17. B. W. Smith, P. B. Farnsworth, J. D. Winefordner, N. Omenetto, “Experimental demonstration a Raman scattering detector based on laser-enhanced ionization,” Opt. Lett. 15, 823–825 (1990).
    [CrossRef] [PubMed]
  18. O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).
  19. See, for example, “Image intensifiers,” in The Hamamatsu Catalog (Hamamatsu Corp., Bridgewater, N.J., 1996).
  20. O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997).
    [CrossRef]
  21. O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.
  22. S. R. Hunter, “Evaluation of a digital optical ionizing radiation particle track detector,” Nucl. Instrum. Methods A 260, 469–477 (1987).
    [CrossRef]
  23. J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
    [CrossRef]
  24. S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).
  25. W. A. Gibson, S. R. Hunter, “Technique for optically imaging charged particle tracks in a gas,” submitted to Rev. Sci. Instrum.
  26. M. Acharecar, P. Gatt, L. Mizerka, “Laser vibration sensor,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 2–11 (1995).
    [CrossRef]
  27. D. E. Oliver, “Scanning laser vibrometer for dynamic deflection shape characterization of aerospace structures,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 12–22 (1995).
    [CrossRef]
  28. I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968), pp. 206–210.
  29. W. Blue, L. Rolandi, Particle Detection with Drift Chambers (Springer-Verlag, Berlin, 1994) Chaps. 6, 10.
  30. O. I. Matveev, “Stepwise photoionization of atoms as a spectroanalytical method,” Ph.D. dissertation (Moscow State University, Moscow, 1979).
  31. H. O. Behrens, G. H. Guthohrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. (Paris) 44, 149–168 (1983).
    [CrossRef]
  32. O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).
  33. V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, London, 1987), pp. 58, 79, 93, 105, 109.
  34. P. Bisling, C. Weitkamp, H. Zobel, “RIS of mercury for analytical applications,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), pp. 283–286.
  35. J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
    [CrossRef]
  36. G. Magerl, B. P. Oehry, W. Ehrlich-Schupita, Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universitat Wien, Vienna, Austria, July1991).
  37. “High performance digital CCD cameras” (Princeton Instruments Catalog, Princeton, N.J., 1996).
  38. B. M. Gentry, C. L. Korb, “Edge technique for high accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
    [CrossRef] [PubMed]
  39. I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
    [CrossRef]
  40. T. Rochow, P. A. Tucker, Introduction to Microscopy by Means of Light, Electrons, X-Rays, or Acoustics (Plenum, New York, 1994).
    [CrossRef]
  41. D. M. Pepper, “Commercial laser-based ultrasound systems may benefit automotive producers,” Laser Focus World 32 (June), 77–80 (1996).
  42. G. W. Brooksby, C. M. Penny, “Measurement of ultrasonically modulated scattered light for imaging in turbid media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 564–570 (1995).
  43. L. Wang, X. Zhao, S. L. Jacques, “Ultrasound modulated optical tomography of dense turbid media,” in Biomedical Sensing, Imaging and Tracking Technologies I, R. A. Liberman, N. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 91–102 (1996).
    [CrossRef]
  44. L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [CrossRef] [PubMed]
  45. A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).
  46. J. A. Samson, Technique of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967), p. 37.
  47. R. Haight, “Photoemission with laser generated harmonics tunable to 80 eV,” Appl. Opt. 33, 6445–6448 (1996).
    [CrossRef]
  48. M. R. Muguira, J. T. Sackos, B. D. Bradley, “Scannerless range imaging with a square wave,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 106–113 (1995).
    [CrossRef]
  49. J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
    [CrossRef]
  50. W. C. Priedhorsky, R. C. Smith, C. Ho, “Laser ranging and mapping with photon counting detector,” Appl. Opt. 35, 441–452 (1996).
    [CrossRef] [PubMed]

1997 (1)

1996 (9)

H. R. Morris, C. C. Hoyt, P. Miller, P. J. Treado, “Liquid crystal tunable filter Raman imaging,” Appl. Spectrosc. 50, 805–811 (1996).
[CrossRef]

H. Chen, M. A. White, D. A. Krueger, C. Y. She, “Daytime mesopause temperature measurement with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
[CrossRef] [PubMed]

W. C. Priedhorsky, R. C. Smith, C. Ho, “Laser ranging and mapping with photon counting detector,” Appl. Opt. 35, 441–452 (1996).
[CrossRef] [PubMed]

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
[CrossRef]

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996).
[CrossRef]

D. Malonek, A. Grinvald, “Interaction between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping,” Science 272, 551–554 (1996).
[CrossRef] [PubMed]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).

D. M. Pepper, “Commercial laser-based ultrasound systems may benefit automotive producers,” Laser Focus World 32 (June), 77–80 (1996).

R. Haight, “Photoemission with laser generated harmonics tunable to 80 eV,” Appl. Opt. 33, 6445–6448 (1996).
[CrossRef]

1995 (2)

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
[CrossRef]

1994 (2)

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

B. M. Gentry, C. L. Korb, “Edge technique for high accuracy Doppler velocimetry,” Appl. Opt. 33, 5770–5777 (1994).
[CrossRef] [PubMed]

1993 (1)

1990 (2)

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

B. W. Smith, P. B. Farnsworth, J. D. Winefordner, N. Omenetto, “Experimental demonstration a Raman scattering detector based on laser-enhanced ionization,” Opt. Lett. 15, 823–825 (1990).
[CrossRef] [PubMed]

1989 (1)

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

1987 (2)

O. I. Matveev, “Atomic resonance spectrometers and filters,” Zh. Prikl. Spektrosk. (USSR) 46, 359–375 (1987).

S. R. Hunter, “Evaluation of a digital optical ionizing radiation particle track detector,” Nucl. Instrum. Methods A 260, 469–477 (1987).
[CrossRef]

1983 (2)

H. O. Behrens, G. H. Guthohrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. (Paris) 44, 149–168 (1983).
[CrossRef]

H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
[CrossRef] [PubMed]

1979 (1)

O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).

1970 (1)

J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[CrossRef]

Acharecar, M.

M. Acharecar, P. Gatt, L. Mizerka, “Laser vibration sensor,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 2–11 (1995).
[CrossRef]

Alvares, L. S.

L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994).
[CrossRef]

Behrens, H. O.

H. O. Behrens, G. H. Guthohrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. (Paris) 44, 149–168 (1983).
[CrossRef]

Bisling, P.

P. Bisling, C. Weitkamp, H. Zobel, “RIS of mercury for analytical applications,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), pp. 283–286.

Blue, W.

W. Blue, L. Rolandi, Particle Detection with Drift Chambers (Springer-Verlag, Berlin, 1994) Chaps. 6, 10.

Bradley, B. D.

M. R. Muguira, J. T. Sackos, B. D. Bradley, “Scannerless range imaging with a square wave,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 106–113 (1995).
[CrossRef]

Brandt, J.

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

Brooksby, G. W.

G. W. Brooksby, C. M. Penny, “Measurement of ultrasonically modulated scattered light for imaging in turbid media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 564–570 (1995).

Chen, H.

Chen, L.

L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994).
[CrossRef]

Clevenger, W. L.

O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997).
[CrossRef]

O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.

Dinndorf, K.

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

Dodd, J. N.

J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[CrossRef]

Drummond, J. P.

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996).
[CrossRef]

Ehrlich-Schupita, W.

G. Magerl, B. P. Oehry, W. Ehrlich-Schupita, Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universitat Wien, Vienna, Austria, July1991).

Fabelinskii, I. L.

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968), pp. 206–210.

Farnsworth, P. B.

Finkelstein, N. D.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Cavity locked, injection seeded, titanium: sapphire laser and application to ultra violet flow diagnostics,” in Proceedings of the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, AIAA paper 96-0177 (American Institute Aeronautics and Astronautics, Washington, D.C., 1996).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “A narrow passband, imaging, refluorescence filter for non-intrusive flow diagnostics,” in Proceedings of the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, AIAA paper 96-2269 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Forkey, J. N.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
[CrossRef]

Ganeev, A. A.

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

Ganeeva, N. V.

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

Gatt, P.

M. Acharecar, P. Gatt, L. Mizerka, “Laser vibration sensor,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 2–11 (1995).
[CrossRef]

Gentry, B. M.

Gibson, W. A.

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

W. A. Gibson, S. R. Hunter, “Technique for optically imaging charged particle tracks in a gas,” submitted to Rev. Sci. Instrum.

Grinvald, A.

D. Malonek, A. Grinvald, “Interaction between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping,” Science 272, 551–554 (1996).
[CrossRef] [PubMed]

Guthohrlein, G. H.

H. O. Behrens, G. H. Guthohrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. (Paris) 44, 149–168 (1983).
[CrossRef]

Haight, R.

R. Haight, “Photoemission with laser generated harmonics tunable to 80 eV,” Appl. Opt. 33, 6445–6448 (1996).
[CrossRef]

Hamm, R. N.

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

Hemmati, H.

H. Hemmati, “Laser communication component technologies: database; status and trends,” in Free-Space Laser Communication Technologies VIII, G. Mecherle, ed., Proc. SPIE2699, 310–314 (1996).
[CrossRef]

Ho, C.

Hoyt, C. C.

Hunter, S. R.

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

S. R. Hunter, “Evaluation of a digital optical ionizing radiation particle track detector,” Nucl. Instrum. Methods A 260, 469–477 (1987).
[CrossRef]

W. A. Gibson, S. R. Hunter, “Technique for optically imaging charged particle tracks in a gas,” submitted to Rev. Sci. Instrum.

Hurst, G. S.

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound modulated optical tomography of dense turbid media,” in Biomedical Sensing, Imaging and Tracking Technologies I, R. A. Liberman, N. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 91–102 (1996).
[CrossRef]

Karakatsanis, C. G.

M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
[CrossRef]

Karlsson, C.

I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
[CrossRef]

Korb, C. L.

Korevaar, E.

H. Chen, C. Y. She, P. Searcy, E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019–1021 (1993).
[CrossRef] [PubMed]

E. Korevaar, M. Rivers, C. S. Liu, “Imaging atomic line filter for satellite tracking,” in Space Sensing, Communications, and Networking, M. Ross, R. J. Temkin, eds., Proc. SPIE1059, 111–118 (1989).
[CrossRef]

Krasutsky, N.

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

Krueger, D. A.

Kuzyakov, Yu. Ya.

O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).

Lau, C. J.

M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
[CrossRef]

Lee, S. A.

Lempert, W. R.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Cavity locked, injection seeded, titanium: sapphire laser and application to ultra violet flow diagnostics,” in Proceedings of the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, AIAA paper 96-0177 (American Institute Aeronautics and Astronautics, Washington, D.C., 1996).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “A narrow passband, imaging, refluorescence filter for non-intrusive flow diagnostics,” in Proceedings of the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, AIAA paper 96-2269 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Letalick, D.

I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, London, 1987), pp. 58, 79, 93, 105, 109.

Liu, C. S.

E. Korevaar, M. Rivers, C. S. Liu, “Imaging atomic line filter for satellite tracking,” in Space Sensing, Communications, and Networking, M. Ross, R. J. Temkin, eds., Proc. SPIE1059, 111–118 (1989).
[CrossRef]

Magerl, G.

G. Magerl, B. P. Oehry, W. Ehrlich-Schupita, Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universitat Wien, Vienna, Austria, July1991).

Malonek, D.

D. Malonek, A. Grinvald, “Interaction between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping,” Science 272, 551–554 (1996).
[CrossRef] [PubMed]

Mandeville, W. J.

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

Matveev, O. I.

O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997).
[CrossRef]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

O. I. Matveev, “Atomic resonance spectrometers and filters,” Zh. Prikl. Spektrosk. (USSR) 46, 359–375 (1987).

O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).

O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.

O. I. Matveev, “Stepwise photoionization of atoms as a spectroanalytical method,” Ph.D. dissertation (Moscow State University, Moscow, 1979).

McKenzie, R. L.

R. L. McKenzie, “Measurement capabilities of planar Doppler velocimety using pulsed lasers,” in Proceedings of the Thirty-Third Aerospace Sciences Meeting and Exhibit, AIAA paper 95-0297 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995).

Miles, R. B.

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
[CrossRef]

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Cavity locked, injection seeded, titanium: sapphire laser and application to ultra violet flow diagnostics,” in Proceedings of the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, AIAA paper 96-0177 (American Institute Aeronautics and Astronautics, Washington, D.C., 1996).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “A narrow passband, imaging, refluorescence filter for non-intrusive flow diagnostics,” in Proceedings of the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, AIAA paper 96-2269 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

Miller, P.

Millnert, M.

I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
[CrossRef]

Minor, L.

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

Mizerka, L.

M. Acharecar, P. Gatt, L. Mizerka, “Laser vibration sensor,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 2–11 (1995).
[CrossRef]

Mordoh, L. S.

O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997).
[CrossRef]

O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.

Morris, H. R.

Muguira, M. R.

M. R. Muguira, J. T. Sackos, B. D. Bradley, “Scannerless range imaging with a square wave,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 106–113 (1995).
[CrossRef]

Northam, G. B.

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996).
[CrossRef]

Oehry, B. P.

G. Magerl, B. P. Oehry, W. Ehrlich-Schupita, Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universitat Wien, Vienna, Austria, July1991).

Oliver, D. E.

D. E. Oliver, “Scanning laser vibrometer for dynamic deflection shape characterization of aerospace structures,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 12–22 (1995).
[CrossRef]

Omenetto, N.

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).

B. W. Smith, P. B. Farnsworth, J. D. Winefordner, N. Omenetto, “Experimental demonstration a Raman scattering detector based on laser-enhanced ionization,” Opt. Lett. 15, 823–825 (1990).
[CrossRef] [PubMed]

Penny, C. M.

G. W. Brooksby, C. M. Penny, “Measurement of ultrasonically modulated scattered light for imaging in turbid media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 564–570 (1995).

Pepper, D. M.

D. M. Pepper, “Commercial laser-based ultrasound systems may benefit automotive producers,” Laser Focus World 32 (June), 77–80 (1996).

Priedhorsky, W. C.

Renhorn, I.

I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
[CrossRef]

Rivers, M.

E. Korevaar, M. Rivers, C. S. Liu, “Imaging atomic line filter for satellite tracking,” in Space Sensing, Communications, and Networking, M. Ross, R. J. Temkin, eds., Proc. SPIE1059, 111–118 (1989).
[CrossRef]

Rochow, T.

T. Rochow, P. A. Tucker, Introduction to Microscopy by Means of Light, Electrons, X-Rays, or Acoustics (Plenum, New York, 1994).
[CrossRef]

Rolandi, L.

W. Blue, L. Rolandi, Particle Detection with Drift Chambers (Springer-Verlag, Berlin, 1994) Chaps. 6, 10.

Rutgers, R.

I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
[CrossRef]

Sackos, J. T.

M. R. Muguira, J. T. Sackos, B. D. Bradley, “Scannerless range imaging with a square wave,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 106–113 (1995).
[CrossRef]

Samson, J. A.

J. A. Samson, Technique of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967), p. 37.

Sandle, W. J.

J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[CrossRef]

Schaeberle, M. D.

M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
[CrossRef]

Searcy, P.

Shay, T. M.

B. Yin, T. M. Shay, “Stark anomalous dispersion optical filter for doubled Nd:YLF lasers,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 455–457 (1994).
[CrossRef]

L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994).
[CrossRef]

She, C. Y.

Shimizu, H.

Sholupov, S. E.

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

Smith, B. W.

O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997).
[CrossRef]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).

B. W. Smith, P. B. Farnsworth, J. D. Winefordner, N. Omenetto, “Experimental demonstration a Raman scattering detector based on laser-enhanced ionization,” Opt. Lett. 15, 823–825 (1990).
[CrossRef] [PubMed]

O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.

Smith, M. W.

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996).
[CrossRef]

Smith, R. C.

Steiner, T. D.

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

Sveshnikov, G. B.

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

Treado, P. J.

H. R. Morris, C. C. Hoyt, P. Miller, P. J. Treado, “Liquid crystal tunable filter Raman imaging,” Appl. Spectrosc. 50, 805–811 (1996).
[CrossRef]

M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
[CrossRef]

Tucker, P. A.

T. Rochow, P. A. Tucker, Introduction to Microscopy by Means of Light, Electrons, X-Rays, or Acoustics (Plenum, New York, 1994).
[CrossRef]

Turkin, Yu. I.

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

Turner, J. E.

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

Wang, L.

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound modulated optical tomography of dense turbid media,” in Biomedical Sensing, Imaging and Tracking Technologies I, R. A. Liberman, N. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 91–102 (1996).
[CrossRef]

Weitkamp, C.

P. Bisling, C. Weitkamp, H. Zobel, “RIS of mercury for analytical applications,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), pp. 283–286.

White, M. A.

Williams, O. M.

J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[CrossRef]

Winefordner, J. D.

O. I. Matveev, L. S. Mordoh, W. L. Clevenger, B. W. Smith, J. D. Winefordner, “Optical emission detection of laser enhanced ionization in a buffer gas,” Appl. Spectrosc. 51, 798–803 (1997).
[CrossRef]

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).

B. W. Smith, P. B. Farnsworth, J. D. Winefordner, N. Omenetto, “Experimental demonstration a Raman scattering detector based on laser-enhanced ionization,” Opt. Lett. 15, 823–825 (1990).
[CrossRef] [PubMed]

O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.

Wright, H. A.

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

Yin, B.

B. Yin, T. M. Shay, “Stark anomalous dispersion optical filter for doubled Nd:YLF lasers,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 455–457 (1994).
[CrossRef]

L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994).
[CrossRef]

Zhao, X.

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[CrossRef] [PubMed]

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound modulated optical tomography of dense turbid media,” in Biomedical Sensing, Imaging and Tracking Technologies I, R. A. Liberman, N. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 91–102 (1996).
[CrossRef]

Zobel, H.

P. Bisling, C. Weitkamp, H. Zobel, “RIS of mercury for analytical applications,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), pp. 283–286.

Zorov, N. B.

O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).

AIAA J. (2)

J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurement,” AIAA J. 34, 442–448 (1996).
[CrossRef]

M. W. Smith, G. B. Northam, J. P. Drummond, “Application of absorption filter planar Doppler velocimetry to sonic and supersonic jets,” AIAA J. 34, 434–441 (1996).
[CrossRef]

Anal. Chem. (1)

M. D. Schaeberle, C. G. Karakatsanis, C. J. Lau, P. J. Treado, “Raman chemical imaging: noninvasive visualization of polymer blend architecture,” Anal. Chem. 67, 4316–4321 (1995).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (2)

J. Anal. Chem. (USSR) (1)

O. I. Matveev, N. B. Zorov, Yu. Ya. Kuzyakov, “Photon detection after its resonance absorption in a atomic vapor,” J. Anal. Chem. (USSR) 34, 846–855 (1979).

J. Phys. (Paris) (1)

H. O. Behrens, G. H. Guthohrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. (Paris) 44, 149–168 (1983).
[CrossRef]

J. Phys. B (1)

J. N. Dodd, W. J. Sandle, O. M. Williams, “A study of the transients in resonance fluorescence following a step or a pulse of magnetic field,” J. Phys. B 3, 256–270 (1970).
[CrossRef]

Laser Focus World (1)

D. M. Pepper, “Commercial laser-based ultrasound systems may benefit automotive producers,” Laser Focus World 32 (June), 77–80 (1996).

Nucl. Instrum. Methods A (1)

S. R. Hunter, “Evaluation of a digital optical ionizing radiation particle track detector,” Nucl. Instrum. Methods A 260, 469–477 (1987).
[CrossRef]

Nucl. Instrum. Methods B (1)

J. E. Turner, S. R. Hunter, R. N. Hamm, H. A. Wright, G. S. Hurst, W. A. Gibson, “Digital characterization of recoil charged-particle tracks for neutron measurement,” Nucl. Instrum. Methods B 40/41, 1219–1223 (1989).
[CrossRef]

Opt. Lett. (4)

Radiat. Protection Dosimetry (1)

S. R. Hunter, W. A. Gibson, G. S. Hurst, J. E. Turner, R. N. Hamm, H. A. Wright, “Optical imaging of charged particle tracks in a gas,” Radiat. Protection Dosimetry 52, 323–328 (1994).

Science (1)

D. Malonek, A. Grinvald, “Interaction between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implication for functional brain mapping,” Science 272, 551–554 (1996).
[CrossRef] [PubMed]

Spectrochim. Acta (1)

O. I. Matveev, B. W. Smith, N. Omenetto, J. D. Winefordner, “Single photo-electron and photon detection in a mercury resonance ionization photon detector,” Spectrochim. Acta 51B, 564–567 (1996).

Zh. Prikl. Spektrosk. (1)

A. A. Ganeev, S. E. Sholupov, N. V. Ganeeva, O. I. Matveev, Yu. I. Turkin, G. B. Sveshnikov, “Remote laser detection of mercury atoms in the atmosphere (the method of the resonance fluorescence),” Zh. Prikl. Spektrosk. 53, 899–909 (1990).

Zh. Prikl. Spektrosk. (USSR) (1)

O. I. Matveev, “Atomic resonance spectrometers and filters,” Zh. Prikl. Spektrosk. (USSR) 46, 359–375 (1987).

Other (26)

E. Korevaar, M. Rivers, C. S. Liu, “Imaging atomic line filter for satellite tracking,” in Space Sensing, Communications, and Networking, M. Ross, R. J. Temkin, eds., Proc. SPIE1059, 111–118 (1989).
[CrossRef]

O. I. Matveev, W. L. Clevenger, L. S. Mordoh, B. W. Smith, J. D. Winefordner, “Plasma emission in a pulsed electric field after resonance ionization of atoms,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), Vol. 338, pp. 171–173.

G. Magerl, B. P. Oehry, W. Ehrlich-Schupita, Atomic Resonance Narrow Band Filters (Institut für Nachrichtentechnik und Hochfrequenztechnik, Technische Universitat Wien, Vienna, Austria, July1991).

“High performance digital CCD cameras” (Princeton Instruments Catalog, Princeton, N.J., 1996).

I. Renhorn, C. Karlsson, D. Letalick, M. Millnert, R. Rutgers, “Coherent laser radar for vibrometry: robust design and adaptive signal processing,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 23–30 (1995).
[CrossRef]

T. Rochow, P. A. Tucker, Introduction to Microscopy by Means of Light, Electrons, X-Rays, or Acoustics (Plenum, New York, 1994).
[CrossRef]

J. A. Samson, Technique of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967), p. 37.

M. R. Muguira, J. T. Sackos, B. D. Bradley, “Scannerless range imaging with a square wave,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 106–113 (1995).
[CrossRef]

J. Brandt, T. D. Steiner, W. J. Mandeville, K. Dinndorf, N. Krasutsky, L. Minor, “Long-range imaging LADAR flight test,” in Applied Laser Radar Technologies II, G. W. Kamerman, ed., Proc. SPIE2472, 114–118 (1995).
[CrossRef]

G. W. Brooksby, C. M. Penny, “Measurement of ultrasonically modulated scattered light for imaging in turbid media,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 564–570 (1995).

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound modulated optical tomography of dense turbid media,” in Biomedical Sensing, Imaging and Tracking Technologies I, R. A. Liberman, N. Podbielska, T. Vo-Dinh, eds., Proc. SPIE2676, 91–102 (1996).
[CrossRef]

V. S. Letokhov, Laser Photoionization Spectroscopy (Academic, London, 1987), pp. 58, 79, 93, 105, 109.

P. Bisling, C. Weitkamp, H. Zobel, “RIS of mercury for analytical applications,” in AIP Conference Proceedings (RIS-96) (American Institute of Physics, New York, 1996), pp. 283–286.

W. A. Gibson, S. R. Hunter, “Technique for optically imaging charged particle tracks in a gas,” submitted to Rev. Sci. Instrum.

M. Acharecar, P. Gatt, L. Mizerka, “Laser vibration sensor,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 2–11 (1995).
[CrossRef]

D. E. Oliver, “Scanning laser vibrometer for dynamic deflection shape characterization of aerospace structures,” in Applied Laser Radar Technology II, G. W. Kamerman, ed., Proc. SPIE2472, 12–22 (1995).
[CrossRef]

I. L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968), pp. 206–210.

W. Blue, L. Rolandi, Particle Detection with Drift Chambers (Springer-Verlag, Berlin, 1994) Chaps. 6, 10.

O. I. Matveev, “Stepwise photoionization of atoms as a spectroanalytical method,” Ph.D. dissertation (Moscow State University, Moscow, 1979).

R. L. McKenzie, “Measurement capabilities of planar Doppler velocimety using pulsed lasers,” in Proceedings of the Thirty-Third Aerospace Sciences Meeting and Exhibit, AIAA paper 95-0297 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “A narrow passband, imaging, refluorescence filter for non-intrusive flow diagnostics,” in Proceedings of the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, AIAA paper 96-2269 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1996).

N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Cavity locked, injection seeded, titanium: sapphire laser and application to ultra violet flow diagnostics,” in Proceedings of the Thirty-Fourth Aerospace Sciences Meeting and Exhibit, AIAA paper 96-0177 (American Institute Aeronautics and Astronautics, Washington, D.C., 1996).

B. Yin, T. M. Shay, “Stark anomalous dispersion optical filter for doubled Nd:YLF lasers,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 455–457 (1994).
[CrossRef]

L. Chen, L. S. Alvares, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2123, 448–454 (1994).
[CrossRef]

H. Hemmati, “Laser communication component technologies: database; status and trends,” in Free-Space Laser Communication Technologies VIII, G. Mecherle, ed., Proc. SPIE2699, 310–314 (1996).
[CrossRef]

See, for example, “Image intensifiers,” in The Hamamatsu Catalog (Hamamatsu Corp., Bridgewater, N.J., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the RIID.

Fig. 2
Fig. 2

Scheme for Hg atom excitation and ionization.

Fig. 3
Fig. 3

Absorbance versus path length for a room-temperature Hg cell.

Fig. 4
Fig. 4

Model used for simulation of RIID spatial resolution.

Fig. 5
Fig. 5

(a) Calculated spatial response of the RIID, 25 °C; (b) calculated spatial response of the RIID, 40 °C; (c) calculated spatial response of the RIID with images separated by 0.044 mm.

Fig. 6
Fig. 6

Response function of the RIID with an isotopic Hg filter.

Fig. 7
Fig. 7

Spectral response function for the RIID.

Fig. 8
Fig. 8

Doppler-free atomic RIM.

Fig. 9
Fig. 9

Scheme for the detection of a moving object.

Fig. 10
Fig. 10

Remote absorption signal detection with the RIID.

Fig. 11
Fig. 11

Scheme for the detection of moving charged particles.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

q=αη,
α=1-exp-nσl,
dE0=I02α0dα.
dEA=dE0 exp-klkdxsin α,
dEAx=I02a tanr/fα1α2exp-kldxsin αdα.
ΩN2πΔνR+ΔνNΔνD,
ΔτRIID=τF2+1RADD21/2.
τF=d2emV1/2,
Δν=2vλL,
a=-20, -19.920,k=10,g=1Fx, a, b=aπ-1010exp-y2a2+1.68x-b-y2dy,Lx=exp-kFx, 2, -10.3exp-kFx, 2, 8.8×exp-kFx, 2, -5.2exp-kFx, 2, 4.7,Tx=1-exp-gFx, 0.02, 0,Rx=LxTx,
N=40,i=0N,j=0N,xi=-0.4017+0.02i,cj=0.01+0.0485j,f=10,r=2,k=8,p=2,Wc, x=a tanxca tanrfksinα exp-kccosα-xsinαdα0.5a tanrf,Kc, x=a tanxp-ca tanrfksinα exp-kccosα+xsinαdα0.5a tanrf,Lc, x=Wc, xϕ-x+crf+Kc, xϕ-x+rfp-c,Mi,j=Rcj, xk,Rc, x=Lc, x+Lc, x+0.2,

Metrics