Abstract

We propose a nonintrusive experimental technique, the transient fuel-concentration measurement technique (TFMT), that is capable of being used to measure two-dimensional profiles of transient fuel concentrations over an open liquid fuel surface. The TFMT is based on single-wavelength holographic interferometry; its response time is less than 1 μs and spatial resolution is 0.1 mol. %/0.1 mm. It was applied to measure both methanol vapor and n-propanol vapor concentrations. To assess the accuracy of the technique, our results were compared with steady-state methanol and n-propanol fuel-vapor concentrations measured by other researchers with a microsampling technique combined with gas chromatography. We found the TFMT to be accurate for on-line monitoring of two-dimensional profiles of fuel-vapor concentrations.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Williams, Combustion Theory, 2nd ed. (Benjamin/Cummins, Menlo Park, Calif., 1985).
  2. K. Saito, F. A. Williams, A. S. Gordon, “Structure of laminar coflow methane air diffusion flames,” J. Heat Transfer 108, 640–648 (1986).
    [CrossRef]
  3. A. Ito, D. Masuda, K. Saito, “A study of flame spread over alcohols using holographic interferometry,” Combust. Flame 83, 375–389 (1991).
    [CrossRef]
  4. A. Ito, A. Narumi, K. Saito, C. Cremers, “Temperature measurement by holographic interferometry in liquids,” in Transport Phenomena in Combustion, S. H. Chan, ed. (Taylor Francis, Washington, D.C., 1995), pp. 1657–1668.
  5. T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
    [CrossRef]
  6. C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), pp. 345–373.
  7. W. Hauf, U. Grigull, “Optical Methods in Heat Transfer,” in Vol. 6 of Advances in Heat Transfer, J. P. Hartnett, T. F. Irvine, eds. (Academic, New York, 1970), pp. 263–267.
  8. T Konishi, A Ito, S Naka, “The measurements of transient vapor concentration profiles over liquid fuels,” in Proceedings of the Thirty-Third Japanese Symposium on Combustion (Combustion Society of Japan, Okayama, 1995), pp. 359–361, in Japanese.
  9. A. Ito, N. Masunaga, K. Baba, “Marangoni effects on wave structure and liquid film breakdown along a heated vertical tube,” in Advances in Multiphase Flow, A. Serizawa, T. Fukano, J. Bataille, eds. (Elsevier, New York, 1995), pp. 255–265.

1991 (1)

A. Ito, D. Masuda, K. Saito, “A study of flame spread over alcohols using holographic interferometry,” Combust. Flame 83, 375–389 (1991).
[CrossRef]

1986 (1)

K. Saito, F. A. Williams, A. S. Gordon, “Structure of laminar coflow methane air diffusion flames,” J. Heat Transfer 108, 640–648 (1986).
[CrossRef]

1980 (1)

T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
[CrossRef]

Baba, K.

A. Ito, N. Masunaga, K. Baba, “Marangoni effects on wave structure and liquid film breakdown along a heated vertical tube,” in Advances in Multiphase Flow, A. Serizawa, T. Fukano, J. Bataille, eds. (Elsevier, New York, 1995), pp. 255–265.

Cremers, C.

A. Ito, A. Narumi, K. Saito, C. Cremers, “Temperature measurement by holographic interferometry in liquids,” in Transport Phenomena in Combustion, S. H. Chan, ed. (Taylor Francis, Washington, D.C., 1995), pp. 1657–1668.

Gordon, A. S.

K. Saito, F. A. Williams, A. S. Gordon, “Structure of laminar coflow methane air diffusion flames,” J. Heat Transfer 108, 640–648 (1986).
[CrossRef]

Grigull, U.

W. Hauf, U. Grigull, “Optical Methods in Heat Transfer,” in Vol. 6 of Advances in Heat Transfer, J. P. Hartnett, T. F. Irvine, eds. (Academic, New York, 1970), pp. 263–267.

Hauf, W.

W. Hauf, U. Grigull, “Optical Methods in Heat Transfer,” in Vol. 6 of Advances in Heat Transfer, J. P. Hartnett, T. F. Irvine, eds. (Academic, New York, 1970), pp. 263–267.

Hirano, T.

T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
[CrossRef]

Ito, A

T Konishi, A Ito, S Naka, “The measurements of transient vapor concentration profiles over liquid fuels,” in Proceedings of the Thirty-Third Japanese Symposium on Combustion (Combustion Society of Japan, Okayama, 1995), pp. 359–361, in Japanese.

Ito, A.

A. Ito, D. Masuda, K. Saito, “A study of flame spread over alcohols using holographic interferometry,” Combust. Flame 83, 375–389 (1991).
[CrossRef]

A. Ito, A. Narumi, K. Saito, C. Cremers, “Temperature measurement by holographic interferometry in liquids,” in Transport Phenomena in Combustion, S. H. Chan, ed. (Taylor Francis, Washington, D.C., 1995), pp. 1657–1668.

A. Ito, N. Masunaga, K. Baba, “Marangoni effects on wave structure and liquid film breakdown along a heated vertical tube,” in Advances in Multiphase Flow, A. Serizawa, T. Fukano, J. Bataille, eds. (Elsevier, New York, 1995), pp. 255–265.

Konishi, T

T Konishi, A Ito, S Naka, “The measurements of transient vapor concentration profiles over liquid fuels,” in Proceedings of the Thirty-Third Japanese Symposium on Combustion (Combustion Society of Japan, Okayama, 1995), pp. 359–361, in Japanese.

Mashiko, I.

T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
[CrossRef]

Masuda, D.

A. Ito, D. Masuda, K. Saito, “A study of flame spread over alcohols using holographic interferometry,” Combust. Flame 83, 375–389 (1991).
[CrossRef]

Masunaga, N.

A. Ito, N. Masunaga, K. Baba, “Marangoni effects on wave structure and liquid film breakdown along a heated vertical tube,” in Advances in Multiphase Flow, A. Serizawa, T. Fukano, J. Bataille, eds. (Elsevier, New York, 1995), pp. 255–265.

Naka, S

T Konishi, A Ito, S Naka, “The measurements of transient vapor concentration profiles over liquid fuels,” in Proceedings of the Thirty-Third Japanese Symposium on Combustion (Combustion Society of Japan, Okayama, 1995), pp. 359–361, in Japanese.

Narumi, A.

A. Ito, A. Narumi, K. Saito, C. Cremers, “Temperature measurement by holographic interferometry in liquids,” in Transport Phenomena in Combustion, S. H. Chan, ed. (Taylor Francis, Washington, D.C., 1995), pp. 1657–1668.

Saito, K.

A. Ito, D. Masuda, K. Saito, “A study of flame spread over alcohols using holographic interferometry,” Combust. Flame 83, 375–389 (1991).
[CrossRef]

K. Saito, F. A. Williams, A. S. Gordon, “Structure of laminar coflow methane air diffusion flames,” J. Heat Transfer 108, 640–648 (1986).
[CrossRef]

A. Ito, A. Narumi, K. Saito, C. Cremers, “Temperature measurement by holographic interferometry in liquids,” in Transport Phenomena in Combustion, S. H. Chan, ed. (Taylor Francis, Washington, D.C., 1995), pp. 1657–1668.

Suzuki, T.

T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
[CrossRef]

Tanabe, N.

T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
[CrossRef]

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), pp. 345–373.

Williams, F. A.

K. Saito, F. A. Williams, A. S. Gordon, “Structure of laminar coflow methane air diffusion flames,” J. Heat Transfer 108, 640–648 (1986).
[CrossRef]

F. A. Williams, Combustion Theory, 2nd ed. (Benjamin/Cummins, Menlo Park, Calif., 1985).

Combust. Flame (1)

A. Ito, D. Masuda, K. Saito, “A study of flame spread over alcohols using holographic interferometry,” Combust. Flame 83, 375–389 (1991).
[CrossRef]

Combust. Sci. Technol. (1)

T. Hirano, T. Suzuki, I. Mashiko, N. Tanabe, “Gas movements in front of flames propagating across methanol,” Combust. Sci. Technol. 22, 83–91 (1980).
[CrossRef]

J. Heat Transfer (1)

K. Saito, F. A. Williams, A. S. Gordon, “Structure of laminar coflow methane air diffusion flames,” J. Heat Transfer 108, 640–648 (1986).
[CrossRef]

Other (6)

F. A. Williams, Combustion Theory, 2nd ed. (Benjamin/Cummins, Menlo Park, Calif., 1985).

A. Ito, A. Narumi, K. Saito, C. Cremers, “Temperature measurement by holographic interferometry in liquids,” in Transport Phenomena in Combustion, S. H. Chan, ed. (Taylor Francis, Washington, D.C., 1995), pp. 1657–1668.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1979), pp. 345–373.

W. Hauf, U. Grigull, “Optical Methods in Heat Transfer,” in Vol. 6 of Advances in Heat Transfer, J. P. Hartnett, T. F. Irvine, eds. (Academic, New York, 1970), pp. 263–267.

T Konishi, A Ito, S Naka, “The measurements of transient vapor concentration profiles over liquid fuels,” in Proceedings of the Thirty-Third Japanese Symposium on Combustion (Combustion Society of Japan, Okayama, 1995), pp. 359–361, in Japanese.

A. Ito, N. Masunaga, K. Baba, “Marangoni effects on wave structure and liquid film breakdown along a heated vertical tube,” in Advances in Multiphase Flow, A. Serizawa, T. Fukano, J. Bataille, eds. (Elsevier, New York, 1995), pp. 255–265.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Accuracy of the measured concentration with the TFMT.

Fig. 2
Fig. 2

Estimated errors with the TFMT for (a) methanol and (b) n-propanol.

Fig. 3
Fig. 3

(a) High-speed shutter system and (b) an optical system for holographic interferometry.

Fig. 4
Fig. 4

(a) Typical interferogram and (b) steady-state concentration profiles that were obtained with the TFMT and MST where W denotes the width of the fuel tray.

Fig. 5
Fig. 5

Typical interferogram pictures in a transient state.

Fig. 6
Fig. 6

Comparison between the measured concentration profiles and the results of a one-dimensional unsteady-state diffusion equation.

Fig. 7
Fig. 7

(a) History of vapor concentration at the gas–liquid interface at different surface temperatures for methanol and (b) changes in surface temperature as measured by an infrared camera.

Tables (1)

Tables Icon

Table 1 Comparison of the TFMT and the MST

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n - 1 = ρ a κ a + ρ f κ f ,
Δ n = n - n 0 = ( κ f - M a M f κ a ) ρ f C f ,
Δ n L = N i λ ,
n f - n a = ρ f κ f - ρ a κ a = ( κ f - M a M f κ a ) ρ f ,
C f = λ N i L ( n f - n a ) .
n ( y ) = n 0 + κ ρ f ( d C f d y ) y ,
y d y 1 + y 2 = d n n ( y ) .
δ = L 2 2 κ ρ f ( d C f d y ) y ,
δ ¯ = 1 L 0 L δ d L = L 2 κ 6 ( d C f d y ) .
Δ C y = ( d C f d y ) y = 0 δ ¯ = L 2 6 κ ρ f 2 ( d C f d y ) 2 .
C f ( y , z ) = C f ( y ) l / 2 z .
Δ n l ( y ) = 0 l ( n l - n 0 ) d z = [ n f ( y ) ¯ - n a ] l ,
Δ n L ( y ) = 0 L ( n L - n 0 ) d z = [ n f ( y ) - n a ] L .
Δ C z = Δ n l Δ n L C f ( y ) .
C f t = D f a ( 2 C f 2 y ) + D f a 1 - C f 0 ( C f y ) y = 0 C f y ,

Metrics