Abstract

A diode laser sensor has been applied to monitor CO, CO2, and CH4 in combustion gases with absorption spectroscopy and fast extraction-sampling techniques. Survey spectra of the CO 3ν band (R branch) and the 2ν1 + 2ν20 + ν3 CO2 band (R branch) near 6350 cm−1 and H2O lines from the ν1 + 2ν2 and 2ν2 + ν3 bands in the spectral region from 6345 to 6660 cm−1 were recorded and compared with calculated spectra (from the HITRAN 96 database) to select optimum transitions for species detection. Species concentrations above a laminar, premixed, methane–air flame were determined from measured absorption in a fast-flow multipass absorption cell containing probe-sampled combustion gases; good agreement was found with calculated chemical equilibrium values.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  2. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
    [CrossRef]
  3. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
    [CrossRef] [PubMed]
  4. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
    [CrossRef] [PubMed]
  5. D. M. Sonnenfroh, M. G. Allen, Diode Laser Sensors for Combustor and Aeroengine Emissions Testing: Applications to CO, CO2, OH, and NO, AIAA Pub. 96-2226 (American Institute of Aeronautics and Astronautics, New Orleans, 1996).
  6. M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
    [CrossRef] [PubMed]
  7. V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).
  8. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  9. D. R. Herriot, H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  10. S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
    [CrossRef]

1996

1995

1994

1981

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

1965

Allen, M. G.

M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996).
[CrossRef] [PubMed]

D. M. Sonnenfroh, M. G. Allen, Diode Laser Sensors for Combustor and Aeroengine Emissions Testing: Applications to CO, CO2, OH, and NO, AIAA Pub. 96-2226 (American Institute of Aeronautics and Astronautics, New Orleans, 1996).

Baer, D. S.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

Chou, S. I.

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

Furlong, E. R.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

Gopaul, N. K. L. M.

Hanson, R. K.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

Herriot, D. R.

Kebabian, P. L.

Kessler, W. J.

McManus, J. B.

Mihalcea, R. M.

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4064 (1996).
[CrossRef] [PubMed]

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

Miller, M. F.

Nagali, V

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

Nagali, V.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
[CrossRef] [PubMed]

Newfield, M. E.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

D. S. Baer, R. K. Hanson, M. E. Newfield, N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
[CrossRef]

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Schulte, H. J.

Segall, J.

Sonnenfroh, D. M.

D. M. Sonnenfroh, M. G. Allen, Diode Laser Sensors for Combustor and Aeroengine Emissions Testing: Applications to CO, CO2, OH, and NO, AIAA Pub. 96-2226 (American Institute of Aeronautics and Astronautics, New Orleans, 1996).

Zahniser, M. S.

AIAA J.

D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
[CrossRef]

Appl. Opt.

Combust. Sci. Technol.

S. M. Schoenung, R. K. Hanson, “CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques,” Combust. Sci. Technol. 24, 227–237 (1981).
[CrossRef]

Opt. Lett.

Other

V Nagali, E. R. Furlong, S. I. Chou, R. M. Mihalcea, D. S. Baer, R. K. Hanson, Diode-Laser Sensor System for Multi-Species and Multi-Parameter Measurements in Combustion Flows, AIAA Pub. 95-2684 (American Institute of Aeronautics and Astronautics, San Diego, 1995).

D. M. Sonnenfroh, M. G. Allen, Diode Laser Sensors for Combustor and Aeroengine Emissions Testing: Applications to CO, CO2, OH, and NO, AIAA Pub. 96-2226 (American Institute of Aeronautics and Astronautics, New Orleans, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental schematic of the diode laser sensor system used to measure CO, CO2, and CH4 absorption in sampled combustion gases.

Fig. 2
Fig. 2

Comparison of the measured and calculated (from the HITRAN 96 database) spectral absorbance of the CO 3ν band (R branch). The data were obtained at 296 K, 338 Torr, XCO = 9.91%, XAr = 9.79% in air over a 3276-cm absorption path. Spectral absorbance is defined by ln(I0/I).

Fig. 3
Fig. 3

Comparison of the measured and calculated (from the HITRAN 96 database) spectral absorbance of the 2ν1 + 2ν20 + ν3 CO2 R branch (296 K, 338 Torr, XCO2 = 8.31% in air, and 3276-cm absorption path length).

Fig. 4
Fig. 4

Comparison of the measured and calculated (from the HITRAN 96 database) spectral absorbance of H2O in the region from 6601 to 6660 cm−1 (296 K, 19.2 Torr of H2O, and 3276-cm absorption path length).

Fig. 5
Fig. 5

Measured absorbance and calculated (from Ref. 3) six-line best-fit Voigt profile of the R(6) manifold of CH4 (2ν3 band) recorded in a multipass cell at 296 K, 150 Torr, XCH4 = 0.234%, with a 3276-cm absorption path length. Contributions from individual transitions are illustrated as broken curves. The residual represents the normalized difference between the data and the six-line best-fit Voigt profile.

Fig. 6
Fig. 6

Response of the fast-flow sampling system to a repetitive square waveform of CO2 flow at a typical measurement pump rate of 0.36 L/s. The solid curve represents the exponential curve fit used to determine the 1/e rise time.

Fig. 7
Fig. 7

Comparison of measured equivalence ratios obtained by sampling and absorption spectroscopy techniques with calibrated values obtained by rotameters. The measured equivalence ratio is calculated from laser-based absorption measurements of CH4 partial pressures and measurements of static cell pressure with a pressure transducer.

Fig. 8
Fig. 8

Calculated adiabatic and measured combustion gas temperatures above the CH4–air flame (measured at the sampling probe height 2 cm above the burner surface).

Fig. 9
Fig. 9

Single-sweep measurement of the R(13) absorption line in the CO 3ν band, recorded in the multipass cell (XCO = 2.18%, 297 K, 239 Torr, 3276-cm absorption path length). The gas was sampled from a premixed CH4–air flame (ϕ = 1.09). The residual represents the normalized difference between the Voigt fit and the measured data.

Fig. 10
Fig. 10

Single-sweep measurement of the R(16) absorption line in the CO21 + 2ν20 + ν3 band recorded in the multipass cell (XCO2 = 7.56%, 297 K, 189 Torr, 3276-cm absorption path length). The gas was sampled from a premixed CH4–air flame (ϕ = 1.27). The residual represents the normalized difference between the two-line Voigt fit and measured data.

Fig. 11
Fig. 11

Comparison of measured sum mole fractions of CO and CO2 with calculated equilibrium values (dry basis).

Fig. 12
Fig. 12

Comparison of measured mole fractions of CO and CO2 with calculated equilibrium values (dry basis).

Fig. 13
Fig. 13

Comparison of measured mole fraction ratios of CO and CO2 with calculated equilibrium values as a function of the equivalence ratio and temperature.

Tables (1)

Tables Icon

Table 1 Overview of the Probed Transitions and Spectroscopic Parameters of CO, CO2, CH4, and H2O at 296 K

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k v , i L = ln ( I 0 I ) ,
X i = 1 S i p ( k ν , i ) d ν ,
t c = V cell V ˙ = V cell m ˙ ρ = V cell m ˙ p R T ,

Metrics