Abstract

We obtain the internal electric field of an illuminated liquid droplet using geometrical optics. The approximation includes the phase effects of various components. We compare the geometrical-optics solution with the Mie theory solution for a nonabsorbing particle with a size parameter of α = 500 and an index of refraction of n = 1.332.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  2. A. Ungut, G. Grehan, G. Gouesbet, “Comparisons between geometrical optics and Lorenz-Mie theory,” Appl. Opt. 20, 2911–2918 (1981).
    [CrossRef] [PubMed]
  3. W. J. Glantschnig, S. H. Chen, “Light scattering from water droplets in the geometrical optics approximation,” Appl. Opt. 20, 2499–2509 (1981).
    [CrossRef] [PubMed]
  4. J. A. Lock, “Ray scattering by an arbitrary oriented spheroid,” Appl. Opt. 35, 500–531 (1996).
    [CrossRef] [PubMed]
  5. K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
    [CrossRef]
  6. G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
    [CrossRef]
  7. J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Tech. 1, 293–302 (1982).
    [CrossRef]
  8. J. R. Snow, S. X. Qian, R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [CrossRef] [PubMed]
  9. J. C. Zhang, R. K. Chang, “Generation and suppression of stimulated Brillouin scattering in single liquid droplets,” J. Opt. Soc. Am. B 6, 151–153 (1989).
    [CrossRef]
  10. H. M. Tzeng, K. F. Wall, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
    [CrossRef] [PubMed]
  11. R. G. Pinnick, P. Chylek, M. Jarzembski, E. Gregan, V. Srivastava, G. Fernandes, J. D. Pendleton, A. Biswas, “Aerosol-induced laser breakdown thresholds: wavelength dependence,” Appl. Opt. 27, 987–996 (1988).
    [CrossRef] [PubMed]
  12. J. A. Lock, E. A. Hovenac, “Internal caustic structure of illuminated liquid droplets,” J. Opt. Soc. Am. A 8, 1541–1552 (1991).
    [CrossRef]
  13. V. Srivastava, M. A. Jarzembski, “Laser-induced stimulated Raman scattering in the forward direction of a droplet: comparison of Mie theory with geometrical optics,” Opt. Lett. 16, 126–128 (1991).
    [CrossRef] [PubMed]
  14. M. A. Jarzembski, V. Srivastava, “Electromagnetic field enhancement in small liquid droplets using geometrical optics,” Appl. Opt. 28, 4962–4965 (1989).
    [CrossRef] [PubMed]
  15. D. Q. Chowdhury, P. W. Barber, S. C. Hill, “Energy density distribution inside large nonabsorbing spheres by using Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
    [CrossRef] [PubMed]
  16. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  17. J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
    [CrossRef]

1996

J. A. Lock, “Ray scattering by an arbitrary oriented spheroid,” Appl. Opt. 35, 500–531 (1996).
[CrossRef] [PubMed]

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

1992

1991

1990

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
[CrossRef]

1989

1988

1985

1984

1982

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Tech. 1, 293–302 (1982).
[CrossRef]

1981

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Barber, P. W.

D. Q. Chowdhury, P. W. Barber, S. C. Hill, “Energy density distribution inside large nonabsorbing spheres by using Mie theory and geometrical optics,” Appl. Opt. 31, 3518–3523 (1992).
[CrossRef] [PubMed]

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Tech. 1, 293–302 (1982).
[CrossRef]

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Biswas, A.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Chang, R. K.

Chen, S. H.

Chowdhury, D. Q.

Chylek, P.

Fast, P.

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

Fernandes, G.

Glantschnig, W. J.

Gouesbet, G.

Gregan, E.

Grehan, G.

Hill, S. C.

Hovenac, E. A.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

Jarzembski, M.

Jarzembski, M. A.

Lock, J. A.

Lumme, K.

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

Muinonen, K.

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

Nousianen, T.

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

Owen, J. F.

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Tech. 1, 293–302 (1982).
[CrossRef]

Peltoniemi, J. I.

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

Pendleton, J. D.

Pinnick, R. G.

Qian, S. X.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

Schweiger, G.

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
[CrossRef]

Snow, J. R.

Srivastava, V.

Tzeng, H. M.

Ungut, A.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Wall, K. F.

Zhang, J. C.

Aerosol Sci. Tech.

J. F. Owen, R. K. Chang, P. W. Barber, “Morphology-dependent resonances in Raman scattering, fluorescence emission and elastic scattering from microparticles,” Aerosol Sci. Tech. 1, 293–302 (1982).
[CrossRef]

Appl. Opt.

J. Aerosol Sci.

G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
[CrossRef]

J. Appl. Phys.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Internal fields of a spherical particle illuminated by tightly focused laser beam: focal point positioning effects at resonance,” J. Appl. Phys. 65, 2900–2906 (1989).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transfer

K. Muinonen, T. Nousianen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–601 (1996).
[CrossRef]

Opt. Lett.

Other

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry for a plane wave incident on a spherical particle.

Fig. 2
Fig. 2

(a) Incident rays restricted to a wedge-shaped sector inside the sphere; (b) projection to the xy plane. The ⊗ denotes the incident geometric rays.

Fig. 3
Fig. 3

Surface plot of the normalized source function in the xz plane for a parallel (x direction) polarized plane wave propagating in the +z-axis direction incident on a sphere with n = 1.332 and α = 500: (a) geometrical-optics solution and (b) Mie theory solution.

Fig. 4
Fig. 4

Gray-level plot of the normalized source function in the xz plane for a parallel (x direction) polarized plane wave propagating in the +z-axis direction incident on a sphere with n = 1.332 and α = 500: (a) geometrical-optics solution and (b) Mie theory solution.

Fig. 5
Fig. 5

Normalized source function S on the surface of the sphere shown as a function of the angle θ. The critical refraction angle θc corresponds to the critical ring region.

Fig. 6
Fig. 6

Mie solution and geometrical-optics solution along the z axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S = E 2 / E 0 2 ,
θ c = 180 ° - 2 sin - 1 [ 1 - ( sin ψ c / n ) 2 ] 1 / 2 - ψ c ,
ψ c = sin - 1 [ ( 4 - n 2 ) / 3 ] 1 / 2 .
r ˜ = ( l + 1 / 2 ) / α .

Metrics