Abstract

We measured the absorption spectrum (340–640 nm) of the purest available water with photothermal deflection spectroscopy. Our spectrum exhibits an absorption minimum in the blue region of the spectrum that is deeper than in most previously documented pure-water absorption studies. We attribute this to exceptional sample purity and our technique’s inherent freedom from scattering effects. Because the absorption minimum is significantly lower, our spectrum displays high-order molecular resonance structure not observed in any previous absorption studies to our knowledge. We find the minimum in the absorption spectrum of pure water is 0.0062 ± 0.0006 m−1 at 420 nm and 25 °C.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 290–292.
  2. A Morel, “Optical properties of oceanic case 1 waters, revisited,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds, Proc. SPIE2963, 108–114 (1997).
  3. H Buiteveld, J. H. M. Hakvoort, M Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).
  4. M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 1059–1077.
  5. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  6. W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
    [CrossRef]
  7. W. G. Driscoll, W Vaughan (Eds.), Handbook of Optics (Optical Society of America, Washington, D.C., 1978), pp. 8-12–8-13.
  8. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, New York, 1974), pp. 1–24.
  9. J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963).
    [CrossRef]
  10. J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  11. A. C. Tam, C. K. N. Patel, “Optical absorptions of light and heavy water by laser optoacoustic spectroscopy,” Appl. Opt. 18, 3348–3358 (1979).
    [CrossRef] [PubMed]
  12. C. K. N. Patel, A. C. Tam, “Optical absorption coefficients of water,” Nature (London) 280, 302–304 (1979).
    [CrossRef]
  13. M. R. Querry, P. G. Cary, R. C. Waring, “Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region,” Appl. Opt. 17, 3587–3592 (1978).
    [CrossRef] [PubMed]
  14. M. Hass, J. W. Davisson, “Absorption coefficient of pure water at 488 and 541.5 nm by adiabatic laser calorimetry,” J. Opt. Soc. Am. 67, 622–624 (1977).
    [CrossRef]
  15. C. F. Bohren, “Absorption of pure water: new upper bounds between 400 and 580 nm,” Appl. Opt. 23, 2868 (1984).
    [CrossRef]
  16. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
    [CrossRef]
  17. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  18. J. A. Sell, “Optical ray tracing for crossed beam photothermal deflection spectroscopy,” Appl. Opt. 26, 336–342 (1987).
    [CrossRef] [PubMed]
  19. J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
    [CrossRef]
  20. W. Nowacki, Dynamic Problems of Thermoelasticity (Noordhoff, Groningen, 1975).
  21. R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 68th ed. (CRC Press, Boca Raton, Fla., 1987), pp. F-10, D-171, and E-10.
  22. K. D. Möller, Optics (University Science, Mill Valley, Calif., 1988).
  23. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).
  24. X. Quan, E. S. Fry, “An empirical expression for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).
    [CrossRef] [PubMed]
  25. The acoustic barrier foam was obtained from E●A●R Specialty Composites Corporation, Indianapolis, Indiana.
  26. The diamond aperture is a wire die obtained from Fort Wayne Wire Die, Fort Wayne, Indiana.
  27. The PIN-10D photodiode was obtained from UDT Sensors, Inc., Hawthorne, California.
  28. F. M. Sogandares, “The spectral absorption of pure water,” Ph.D. dissertation (Texas AM University, College Station, Tex., 1991).
  29. “Ultrapure ion free/organic free water for trace analysis,” Lit. No. CG302 (Millipore Corporation, Bedford, Mass., 1986).
  30. W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
    [CrossRef]
  31. Irgalan Black was obtained from CIBA-GEIGY Corporation, Greensboro, North Carolina.
  32. The liquid absorption standards are identified by NBS#931d, Lot#680312 and were obtained from the NIST Office of Standard Reference Materials.

1995 (1)

1993 (1)

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

1987 (1)

1984 (1)

1983 (1)

J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[CrossRef]

1981 (2)

1979 (2)

1978 (1)

1977 (2)

1968 (1)

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

1963 (1)

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

1951 (1)

Amer, N. M.

Baker, K. S.

Bayly, J. G.

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

Boccara, A. C.

Bohren, C. F.

Born, M.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).

Buiteveld, H

H Buiteveld, J. H. M. Hakvoort, M Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).

Cary, P. G.

Curcio, J. A.

Davisson, J. W.

Donze, M

H Buiteveld, J. H. M. Hakvoort, M Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).

Fournier, D.

Fry, E. S.

Hakvoort, J. H. M.

H Buiteveld, J. H. M. Hakvoort, M Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).

Hass, M.

Heritier, J.-M.

J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[CrossRef]

Irvine, W. M.

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 290–292.

Jackson, W. B.

Kartha, V. B.

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

Möller, K. D.

K. D. Möller, Optics (University Science, Mill Valley, Calif., 1988).

Morel, A

A Morel, “Optical properties of oceanic case 1 waters, revisited,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds, Proc. SPIE2963, 108–114 (1997).

Morel, A.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, New York, 1974), pp. 1–24.

Nowacki, W.

W. Nowacki, Dynamic Problems of Thermoelasticity (Noordhoff, Groningen, 1975).

Patel, C. K. N.

Pegau, W. S.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Petty, C. C.

Pollack, J. B.

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Prieur, L.

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

Quan, X.

Querry, M. R.

M. R. Querry, P. G. Cary, R. C. Waring, “Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region,” Appl. Opt. 17, 3587–3592 (1978).
[CrossRef] [PubMed]

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 1059–1077.

Segelstein, D. J.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 1059–1077.

Sell, J. A.

Smith, R. C.

Sogandares, F. M.

F. M. Sogandares, “The spectral absorption of pure water,” Ph.D. dissertation (Texas AM University, College Station, Tex., 1991).

Stevens, W. H.

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

Tam, A. C.

Waring, R. C.

Wieliczka, D. M.

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 1059–1077.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).

Zaneveld, J. R. V.

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Appl. Opt. (7)

Icarus (1)

W. M. Irvine, J. B. Pollack, “Infrared optical properties of water and ice spheres,” Icarus 8, 324–360 (1968).
[CrossRef]

Infrared Phys. (1)

J. G. Bayly, V. B. Kartha, W. H. Stevens, “The absorption spectra of liquid phase H2O, HDO, and D2O from 0.7 μm to 10 μm,” Infrared Phys. 3, 211–223 (1963).
[CrossRef]

J. Opt. Soc. Am. (2)

Limnol. Oceanogr. (2)

A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22, 709–722 (1977).
[CrossRef]

W. S. Pegau, J. R. V. Zaneveld, “Temperature-dependent absorption of water in the red and near-infrared portions of the spectrum,” Limnol. Oceanogr. 38, 188–192 (1993).
[CrossRef]

Nature (London) (1)

C. K. N. Patel, A. C. Tam, “Optical absorption coefficients of water,” Nature (London) 280, 302–304 (1979).
[CrossRef]

Opt. Commun. (1)

J.-M. Heritier, “Electrostrictive limit and focusing effects in pulsed photoacoustic detection,” Opt. Commun. 44, 267–272 (1983).
[CrossRef]

Other (17)

W. Nowacki, Dynamic Problems of Thermoelasticity (Noordhoff, Groningen, 1975).

R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 68th ed. (CRC Press, Boca Raton, Fla., 1987), pp. F-10, D-171, and E-10.

K. D. Möller, Optics (University Science, Mill Valley, Calif., 1988).

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975).

The acoustic barrier foam was obtained from E●A●R Specialty Composites Corporation, Indianapolis, Indiana.

The diamond aperture is a wire die obtained from Fort Wayne Wire Die, Fort Wayne, Indiana.

The PIN-10D photodiode was obtained from UDT Sensors, Inc., Hawthorne, California.

F. M. Sogandares, “The spectral absorption of pure water,” Ph.D. dissertation (Texas AM University, College Station, Tex., 1991).

“Ultrapure ion free/organic free water for trace analysis,” Lit. No. CG302 (Millipore Corporation, Bedford, Mass., 1986).

Irgalan Black was obtained from CIBA-GEIGY Corporation, Greensboro, North Carolina.

The liquid absorption standards are identified by NBS#931d, Lot#680312 and were obtained from the NIST Office of Standard Reference Materials.

W. G. Driscoll, W Vaughan (Eds.), Handbook of Optics (Optical Society of America, Washington, D.C., 1978), pp. 8-12–8-13.

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, eds. (Academic, New York, 1974), pp. 1–24.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), pp. 290–292.

A Morel, “Optical properties of oceanic case 1 waters, revisited,” in Ocean Optics XIII, S. G. Ackleson, R. Frouin, eds, Proc. SPIE2963, 108–114 (1997).

H Buiteveld, J. H. M. Hakvoort, M Donze, “The optical properties of pure water,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 174–183 (1994).

M. R. Querry, D. M. Wieliczka, D. J. Segelstein, “Water (H2O),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, San Diego, Calif., 1991), pp. 1059–1077.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Selected pure-water absorption spectra representative of variability in published data. Shoulders corresponding to harmonics of the O–H stretch are indicated by arrows.

Fig. 2
Fig. 2

In PDS a continuous-wave laser beam (probe beam) propagates through a region locally heated by a pulsed laser (pump beam). The probe beam is refracted (deflected) by the index gradient produced by local heating and is positioned to pass through a region of maximum gradient. The magnitude of the probe beam deflection depends linearly on the product aE, where a is the absorption coefficient and E is the energy in the pump beam pulse. In our experiment, the pump beam is focused with a cylinder lens and produces a locally heated cross section that is ≈5 mm long at the focal point.

Fig. 3
Fig. 3

Schematic of the photothermal spectrometer. Pump and probe intensities were measured with a pulsed joulemeter and a silicon photodiode, respectively. Axial separation of the beams was adjusted by moving the cylindrical lens up or down (in or out of the page) with the micropositioner.

Fig. 4
Fig. 4

Schematic of the detection electronics.

Fig. 5
Fig. 5

Schematic of the Millipore Milli-Q pure-water system. To minimize contamination, all pure-water samples were drawn from the Type I outlet (L) directly into the sample cell. Before each sample was drawn, the system was run until the resistivity peaked at ~18 MΩ cm; typically, ≈1/2 l of water was discarded prior to sample collection.

Fig. 6
Fig. 6

Absorption spectrum of IrB.

Fig. 7
Fig. 7

Average of 1000 waveforms of the photothermal response in pure water together with the best fit of a reference waveform (λ = 500 nm). The reference waveform is a scaled calibration waveform that represents the instrument response under ideal noise conditions and provides the temporal response of the detector circuits. Each channel represents 1/128 ms.

Fig. 8
Fig. 8

Example of two calibration waveforms with slightly different time constants. The photothermal time constant depends on the pump–probe separation and changes slightly when the separation is adjusted. New calibration waveforms are required for the fit to each pure-water measurement.

Tables (2)

Tables Icon

Table 1 Pure-Water Absorption Values Obtained in This Studya

Tables Icon

Table 2 Predicted and Observed Resonance Peaksa

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 exp [ - c ( λ ) z ] ,
- D 2 T + T t = q ˙ ρ C p ,
D = k ρ C p ,
I ( r , t ) = E δ ( t - t 0 ) 2 π ω 0 2 exp ( - 2 r 2 ω 0 2 ) ,
q ˙ = a I ( r , t ) = 2 a E δ ( t - t 0 ) π ω 0 2 exp ( - 2 r 2 ω 0 2 ) .
T ( r , t ) = 2 a E Θ ( t - t 0 ) π ρ C p [ ω 0 2 + 8 D ( t - t 0 ) ] × exp [ - 2 r 2 ω 0 2 + 8 D ( t - t 0 ) ] ,
d d s [ s ^ n ( r , t ) ] = n ( r , t ) ,
n x i = n T T r r x i = x i r n T T r .
n ( r , t ) x i = - n T 8 x i a E Θ ( t - t 0 ) π ρ C p [ ω 0 2 + 8 D ( t - t 0 ) ] 2 × exp [ - 2 r 2 ω 0 2 + 8 D ( t - t 0 ) ] .
a ( λ ) sample = a ( λ ) IrB + a ( λ ) w ,
S c ( λ , t ) = 1 n 1 I p i = 1 n S i E i .
S c ( t ) = K ( t ) ( a IrB + a w ) + ( dc ) c ,
S w ( λ , t ) = 1 n 1 I p i = 1 n S i E i ,
S w ( t ) = K ( t ) a w + ( dc ) w .
S w ( t ) = a w a w + a IrB S c ( t ) + dc m S c ( t ) + dc ,
a w = m 1 - m a IrB .

Metrics