Abstract

A method is evaluated for estimating the absorption coefficient a and the backscattering coefficient bb from measurements of the upward and downward irradiances Eu(z) and Ed(z). With this method, the reflectance ratio R(z) and the downward diffuse attenuation coefficient Kd(z) obtained from Eu(z) and Ed(z) are used to estimate the inherent optical properties R and K that are the asymptotic values of R(z) and Kd(z), respectively. For an assumed scattering phase function β˜, there are unique correlations between the values of R and K and those of a and bb that can be derived from the radiative transfer equation. Good estimates of a and the Gordon parameter G = bb/(a + bb) can be obtained from R and K if the true scattering phase function is not greatly different from the assumed function. The method works best in deep, homogeneous waters, but can be applied to some cases of stratified waters. To improve performance in shallow waters where bottom effects are important, the deep- and shallow-measurement reflectance models also are developed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription