Abstract

The subjects of laser initiation and beam quality evolution in short-pulse-duration systems that employ confocal unstable resonators motivated this work. Experimentation and analysis of the performance of a laser-pumped, organic dye laser are presented. Combined results indicate that a saturation flux arises through a coalescence of stabilized, diverging-mode components of the initially emitted fluorescence. The ABCD law method was used to devise calculational techniques that clearly demonstrate the particular mechanisms responsible for rapid mode stabilization, subsequent beam quality development, and laser initiation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
    [CrossRef]
  2. T. F. Ewanizky, “An unstable-resonator flashlamp-pumped dye laser,” Appl. Phys. Lett. 25, 295–297 (1974).
    [CrossRef]
  3. T. F. Ewanizky, “Negative-branch unstable resonator Nd:YAG laser,” Appl. Opt. 15, 1465–1469 (1976).
    [CrossRef] [PubMed]
  4. T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979).
    [CrossRef]
  5. Y. A. Anen’ev, “Establishment of oscillations in unstable resonators,” Sov. J. Quantum Electron. 5, 615–617 (1975).
    [CrossRef]
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Section 22.2.
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 897–898.
  8. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1970), pp. 416–417.
  10. M Born, E Wolf, “Aberrated laser beams,” in Principles of Optics, 6th ed. (Pergamon, London, 1970), Section 18.2.
  11. Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).
  12. T. F. Ewanizky, “Ray-transfer-matrix approach to unstable resonator analysis,” Appl. Opt., 18, 724–727 (1979).
    [PubMed]
  13. W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. QU-5, 575–586 (1969).
    [CrossRef]
  14. V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984).
    [CrossRef]

1984 (1)

V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984).
[CrossRef]

1979 (2)

T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979).
[CrossRef]

T. F. Ewanizky, “Ray-transfer-matrix approach to unstable resonator analysis,” Appl. Opt., 18, 724–727 (1979).
[PubMed]

1976 (1)

1975 (1)

Y. A. Anen’ev, “Establishment of oscillations in unstable resonators,” Sov. J. Quantum Electron. 5, 615–617 (1975).
[CrossRef]

1974 (2)

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

T. F. Ewanizky, “An unstable-resonator flashlamp-pumped dye laser,” Appl. Phys. Lett. 25, 295–297 (1974).
[CrossRef]

1970 (1)

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

1969 (1)

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. QU-5, 575–586 (1969).
[CrossRef]

1966 (1)

Alekseev, V. A.

V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984).
[CrossRef]

Anen’ev, Y. A.

Y. A. Anen’ev, “Establishment of oscillations in unstable resonators,” Sov. J. Quantum Electron. 5, 615–617 (1975).
[CrossRef]

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

Bayha, W. T.

T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979).
[CrossRef]

Born, M

M Born, E Wolf, “Aberrated laser beams,” in Principles of Optics, 6th ed. (Pergamon, London, 1970), Section 18.2.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1970), pp. 416–417.

Ewanizky, T. F.

T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979).
[CrossRef]

T. F. Ewanizky, “Ray-transfer-matrix approach to unstable resonator analysis,” Appl. Opt., 18, 724–727 (1979).
[PubMed]

T. F. Ewanizky, “Negative-branch unstable resonator Nd:YAG laser,” Appl. Opt. 15, 1465–1469 (1976).
[CrossRef] [PubMed]

T. F. Ewanizky, “An unstable-resonator flashlamp-pumped dye laser,” Appl. Phys. Lett. 25, 295–297 (1974).
[CrossRef]

Isaev, A. A.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

Kazaryan, M. A.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

Kogelnik, H.

Koval’chuk, L. V.

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

Krupke, W. F.

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. QU-5, 575–586 (1969).
[CrossRef]

Li, T.

Petrash, G. G.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

Rautian, S. G.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

Rohde, R. S.

T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979).
[CrossRef]

Sherstobitov, V. E.

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

Shulenin, A. V.

V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Section 22.2.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 897–898.

Sooy, W. R.

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. QU-5, 575–586 (1969).
[CrossRef]

Svensitskaya, N. A.

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

Trinchuk, B. F.

V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984).
[CrossRef]

Vinokurov, G. N.

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

Wolf, E

M Born, E Wolf, “Aberrated laser beams,” in Principles of Optics, 6th ed. (Pergamon, London, 1970), Section 18.2.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1970), pp. 416–417.

Zemskov, K. I.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

T. F. Ewanizky, “An unstable-resonator flashlamp-pumped dye laser,” Appl. Phys. Lett. 25, 295–297 (1974).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979).
[CrossRef]

W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. QU-5, 575–586 (1969).
[CrossRef]

J. Appl. Spectrosc. (1)

V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984).
[CrossRef]

Sov. J. Quantum Electron. (2)

Y. A. Anen’ev, “Establishment of oscillations in unstable resonators,” Sov. J. Quantum Electron. 5, 615–617 (1975).
[CrossRef]

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974).
[CrossRef]

Sov. Phys. JETP (1)

Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).

Other (4)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1970), pp. 416–417.

M Born, E Wolf, “Aberrated laser beams,” in Principles of Optics, 6th ed. (Pergamon, London, 1970), Section 18.2.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Section 22.2.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 897–898.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the hybrid resonator dye laser. Although shown with a scraper mirror, S, much of the study was performed with partial reflectance for M2 for end coupling through it.

Fig. 2
Fig. 2

Change in the Gaussian (radial) spot size w of the axially propagating beam. The initial BW-mode beam is seen to pass through the BW–FW evolution at n = 9, after which it assumes the properties of the FW mode. Depending on the particular parameter values chosen, it was found that the spot size at the last pass could be significantly different from the initial value of w = a1.

Fig. 3
Fig. 3

Contour of a propagating BW mode Gaussian beam with an initial inclination of 0.20 mrad. Note that the beam is increasingly displaced from the axis and finally couples out of the resonator at n = 14, where its displacement exceeds the feedback mirror radius a2.

Fig. 4
Fig. 4

Inclined ray bundle propagation in the FW mode for the extreme inclination of 5 mrad. After each resonator pass, if the size of the bundle exceeded a1 or a2, as applicable, the edge rays were properly reconstituted with respect to axial displacement and slope.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ A B C D ] = [ 1 L - 1 / f 1 - L / f ] .
1 / q = 1 / R - j ( λ / π ω 2 ) ,
q ( 2 ) = [ A q ( 1 ) + B ] / [ C q ( 1 ) + D ] .
[ a 2 ( m - 1 ) / L ] ( 1 / m N ) = ( λ / a 1 ) .
N = ( 1 / ln m ) ln [ a 1 a 2 ( m - 1 ) / λ L ] .

Metrics