Abstract

We demonstrate stable continuous-wave operation of a Cr:forsterite laser pumped by a cw Nd:YAG laser at 288 K. We use no choppers to limit the duty cycle of the cw system. The proper adjustment of the pump- and cavity-mode overlap based on the ABCD concept simulation eliminates the output power decrease at the high-level pump power. An output power of 1.1 W and slope efficiency of 26% are derived.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
    [CrossRef]
  2. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]
  3. V. Yanovsky, Y. Pang, F. Wise, B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr-forsterite laser,” Opt. Lett. 18, 1541–1543 (1993).
    [CrossRef]
  4. A. Seas, V. Petričević, R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668–1670 (1991).
    [CrossRef] [PubMed]
  5. A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
    [CrossRef] [PubMed]
  6. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti-sapphire, and YAG:Nd pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
    [CrossRef]
  7. V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).
  8. A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
    [CrossRef]
  9. V. Petricevic, A. Seas, R. R. Alfano, “Slope efficiency measurement of a chromium-doped forsterite laser,” Opt. Lett. 16, 811–813 (1991).
    [CrossRef]
  10. U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988).
    [CrossRef]
  11. M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
    [CrossRef]
  12. M. Abramavitz, I. A. Stegun, eds., Handbook of Mathematical Function (Dover, New York, 1972), p. 229.
  13. A. Sennaroglu, A. Asker, F. M. Atay, “Laser beam propagation in thermally loaded absorber,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 222–225.
  14. W. M. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), pp. 51, 359.
  15. V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.
  16. A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
    [CrossRef]
  17. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
    [CrossRef]
  18. J. F. Cormier, M. Piche, F. Salin, “Suppression of beam breakup in self-mode-locked Ti-sapphire lasers,” Opt. Lett. 19, 1225–1227 (1994).
    [CrossRef] [PubMed]
  19. A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
    [CrossRef]
  20. N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

1997 (1)

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

1996 (2)

V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

1995 (1)

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

1994 (2)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

J. F. Cormier, M. Piche, F. Salin, “Suppression of beam breakup in self-mode-locked Ti-sapphire lasers,” Opt. Lett. 19, 1225–1227 (1994).
[CrossRef] [PubMed]

1993 (2)

V. Yanovsky, Y. Pang, F. Wise, B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr-forsterite laser,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti-sapphire, and YAG:Nd pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

1992 (1)

1991 (2)

1990 (2)

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

1988 (1)

U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988).
[CrossRef]

1972 (1)

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Alfano, R. R.

Asker, A.

A. Sennaroglu, A. Asker, F. M. Atay, “Laser beam propagation in thermally loaded absorber,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 222–225.

Atay, F. M.

A. Sennaroglu, A. Asker, F. M. Atay, “Laser beam propagation in thermally loaded absorber,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 222–225.

Avtukh, A. S.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

Baryshevski, V. G.

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Buoncristiani, A. M.

U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988).
[CrossRef]

Byuik, C. E.

U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988).
[CrossRef]

Carrig, T. J.

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti-sapphire, and YAG:Nd pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef] [PubMed]

Cormier, J. F.

Danger, T.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Dienes, A.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Farrukh, U. O.

U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988).
[CrossRef]

Feilds, R.

M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Hartung, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Huber, G.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Innocenzi, M. E.

M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Ippen, E. P.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Ivanov, A. A.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Jonusauskas, G.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Kamalov, V. F.

V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).

Kimaev, A. E.

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Koechner, W. M.

W. M. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), pp. 51, 359.

Kogelnik, H. W.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Korzhik, M. V.

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Kuck, S.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Kuleshov, N. V.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Lifanov, A. P.

V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).

Livshitz, M. G.

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Macnamara, S.

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

Melman, M. L.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Mikhailov, V. P.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Milman, M. L.

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

Minkov, B. I.

V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

V. Yanovsky, Y. Pang, F. Wise, B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr-forsterite laser,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef]

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

Minkov, B. J.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Mishkel, J. I.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Nathel, H.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

Oberle, J.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Orenz, M. L.

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

Pang, Y.

Pavlenko, V. B.

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

Penzkofer, A.

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

Petermann, K.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Petricevic, V.

Piche, M.

Pollock, C. R.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti-sapphire, and YAG:Nd pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef] [PubMed]

Rulliere, C.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Salin, F.

Seas, A.

Sennaroglu, A.

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef] [PubMed]

A. Sennaroglu, A. Asker, F. M. Atay, “Laser beam propagation in thermally loaded absorber,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 222–225.

Shank, C. V.

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

Shcherbitsky, V. G.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Shkadarevich, A. P.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Siegert, E.

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

Slobodchikov, E. V.

V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).

Tarasov, A. A.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Wise, F.

Wittmann, M.

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

Yanovsky, V.

Yura, H. I.

M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Zhavoronkov, N. I.

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (4)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti-sapphire, and YAG:Nd pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988).
[CrossRef]

H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972).
[CrossRef]

J. Appl. Spectrosc. (USSR) (1)

V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990).
[CrossRef]

Opt. Commun. (1)

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Opt. Lett. (5)

Optic. Quantum Electron. (1)

A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996).
[CrossRef]

Quantum Electron. (2)

A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997).
[CrossRef]

V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).

Other (5)

M. Abramavitz, I. A. Stegun, eds., Handbook of Mathematical Function (Dover, New York, 1972), p. 229.

A. Sennaroglu, A. Asker, F. M. Atay, “Laser beam propagation in thermally loaded absorber,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 222–225.

W. M. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), pp. 51, 359.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Minimal beam diameter as a function of distance l23 between curved mirrors for M2K1 distances: (a) 45, (b) 47, (c) 49, (d) 50, (e) 51 mm. Pump powers of 0, 6, and 10 W are represented by solid, dotted, and dashed curves, respectively. The upper line of the corresponding curve for pump powers of 6 and 10 W represents Δd for the direction of propagation coincident with the pump radiation, and the lower line represents Δd for the opposite direction.

Fig. 2
Fig. 2

Experimental layout of the cw Cr:forsterite laser system: λ/2, half-wave plate; GP, Glan-prism polarizer; L, 100-mm-focal-length lens; M1 and M2, concave mirrors with r = 100 mm and high reflection of 1.19–1.31 μm; M3, flat mirror with high reflection of 1.19–1.31 μm; M4, output coupler; BF, birefringent tuning plate.

Fig. 3
Fig. 3

Output power versus pump power absorbed in the Cr: forsterite crystal for different output coupling mirrors (T = 1.25, 2.3, 4.9, and 6.95%).

Fig. 4
Fig. 4

Inverse slope efficiency (1/η) as a function of inverse output coupling (1/T) for the cw Nd:YAG-pumped Cr:forsterite laser.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

- K 2 T ( r , z ) = Q ( r , z ) ,
Q ( r , z ) = α β I ( r , z ) ,
Δ T ( r , z ) = α β P ( z ) 4 π K { l n ( R 2 r 2 ) + E 1 [ 2 R 2 ω 2 ( z ) ] - E 1 [ 2 r 2 ω 2 ( z ) ] } ,
T ( r , z ) - T s T 0 ( z ) - T 2 ( z ) r 2 ,
T 0 ( z ) = α β P ( z ) 4 π K { E 1 [ 2 R 2 ω 2 ( z ) ] + 1 n [ 2 R 2 ω 2 ( z ) ] + γ } ,
T 2 ( z ) = α β P ( z ) 2 π K ω 2 ( z ) ,
n ( r , z ) - n l = ( d n / d T ) Δ T ( r , z ) .
n ( r , z ) = n 0 ( z ) - 1 / 2 [ n 2 ( z ) r 2 ] ,
f = π K ω 2 P 0 β ( d n / d t ) [ 1 1 - exp ( - α l ) ] ,

Metrics