Abstract

The fluoride fiber laser with the longest emission wavelength, the Ho3+-transition at 3.9 μm in the attenuation minimum of the 3–5-μm atmospheric window, is characterized. After reviewing the importance of fluoride fibers due to their low phonon energies, we describe room-temperature fluorescence and laser action with liquid-nitrogen cooling. Continuous-wave laser action at 3.9 μm is presented for the 640- and the 890-nm pump ranges. A shift of the emission wavelength is achieved by varying the resonator mirrors. Laser characteristics and temperature dependence are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Brierley, P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
    [CrossRef]
  2. L. Wetenkamp, “Efficient CW operation of a Ho3+-doped fluorozirconate fibre laser pumped at 640 nm,” Electron. Lett. 26, 883–884 (1990).
    [CrossRef]
  3. P. W. France, M. C. Brierley, “Fluoride fibre lasers and amplifiers,” in Optical Fibre Lasers and Amplifiers, P. W. France, ed. (Blackie, London, 1991).
  4. M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
    [CrossRef]
  5. H. Többen, “CW-lasing at 3.45 μm in erbium-doped fluorozirconate fibers,” Frequenz 45, 250–251 (1991).
    [CrossRef]
  6. H. Többen, “Neue Faserlaser für das nahe und mittlere Infrarot,” Dissertation (Technische Universität Braunschweig, Braunschweig, Germany, 1993).
  7. L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
    [CrossRef]
  8. L Wetenkamp, “Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern,” Dissertation (Fakultät für Maschinenbau und Elektrotechnik, Technische Universität Braunschweig, Braunschweig, Germany).
  9. J. Schneider, “Superfluorescent fiber source at 3.9 μm in the attenuation minimum of the atmospheric window 3–5 μm,” Int. J. Infrared Millimeter Waves 16, 75–82 (1995).
    [CrossRef]
  10. J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31, 1250–1251 (1995).
    [CrossRef]
  11. K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
    [CrossRef]

1995 (2)

J. Schneider, “Superfluorescent fiber source at 3.9 μm in the attenuation minimum of the atmospheric window 3–5 μm,” Int. J. Infrared Millimeter Waves 16, 75–82 (1995).
[CrossRef]

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31, 1250–1251 (1995).
[CrossRef]

1991 (1)

H. Többen, “CW-lasing at 3.45 μm in erbium-doped fluorozirconate fibers,” Frequenz 45, 250–251 (1991).
[CrossRef]

1990 (1)

L. Wetenkamp, “Efficient CW operation of a Ho3+-doped fluorozirconate fibre laser pumped at 640 nm,” Electron. Lett. 26, 883–884 (1990).
[CrossRef]

1988 (1)

M. C. Brierley, P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

1984 (1)

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

1968 (1)

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Brierley, M. C.

M. C. Brierley, P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

P. W. France, M. C. Brierley, “Fluoride fibre lasers and amplifiers,” in Optical Fibre Lasers and Amplifiers, P. W. France, ed. (Blackie, London, 1991).

Brown, R. N.

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Drexhage, M. G.

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

France, P. W.

M. C. Brierley, P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

P. W. France, M. C. Brierley, “Fluoride fibre lasers and amplifiers,” in Optical Fibre Lasers and Amplifiers, P. W. France, ed. (Blackie, London, 1991).

Moos, H. W.

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Schneider, J.

J. Schneider, “Superfluorescent fiber source at 3.9 μm in the attenuation minimum of the atmospheric window 3–5 μm,” Int. J. Infrared Millimeter Waves 16, 75–82 (1995).
[CrossRef]

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31, 1250–1251 (1995).
[CrossRef]

Shinn, M. D.

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Sibley, W. A.

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Tanimura, K.

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

Többen, H.

H. Többen, “CW-lasing at 3.45 μm in erbium-doped fluorozirconate fibers,” Frequenz 45, 250–251 (1991).
[CrossRef]

H. Többen, “Neue Faserlaser für das nahe und mittlere Infrarot,” Dissertation (Technische Universität Braunschweig, Braunschweig, Germany, 1993).

Wetenkamp, L

L Wetenkamp, “Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern,” Dissertation (Fakultät für Maschinenbau und Elektrotechnik, Technische Universität Braunschweig, Braunschweig, Germany).

Wetenkamp, L.

L. Wetenkamp, “Efficient CW operation of a Ho3+-doped fluorozirconate fibre laser pumped at 640 nm,” Electron. Lett. 26, 883–884 (1990).
[CrossRef]

Electron. Lett. (3)

M. C. Brierley, P. W. France, “Continuous wave lasing at 2.7 μm in an erbium-doped fluorozirconate fibre,” Electron. Lett. 24, 935–937 (1988).
[CrossRef]

L. Wetenkamp, “Efficient CW operation of a Ho3+-doped fluorozirconate fibre laser pumped at 640 nm,” Electron. Lett. 26, 883–884 (1990).
[CrossRef]

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31, 1250–1251 (1995).
[CrossRef]

Frequenz (1)

H. Többen, “CW-lasing at 3.45 μm in erbium-doped fluorozirconate fibers,” Frequenz 45, 250–251 (1991).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

J. Schneider, “Superfluorescent fiber source at 3.9 μm in the attenuation minimum of the atmospheric window 3–5 μm,” Int. J. Infrared Millimeter Waves 16, 75–82 (1995).
[CrossRef]

Phys. Rev. (1)

L. A. Riseberg, H. W. Moos, “Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals,” Phys. Rev. 174, 429–438 (1968).
[CrossRef]

Phys. Rev. B (2)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Er3+-ions in fluorozirconate glasses,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

K. Tanimura, M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical transitions of Ho3+ ions in fluorozirconate glass,” Phys. Rev. B 30, 2429–2437 (1984).
[CrossRef]

Other (3)

L Wetenkamp, “Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern,” Dissertation (Fakultät für Maschinenbau und Elektrotechnik, Technische Universität Braunschweig, Braunschweig, Germany).

H. Többen, “Neue Faserlaser für das nahe und mittlere Infrarot,” Dissertation (Technische Universität Braunschweig, Braunschweig, Germany, 1993).

P. W. France, M. C. Brierley, “Fluoride fibre lasers and amplifiers,” in Optical Fibre Lasers and Amplifiers, P. W. France, ed. (Blackie, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fluorescence of a Ho3+-doped fiber at 3.9 μm with a pump wavelength of 652 nm at room temperature.

Fig. 2
Fig. 2

Energy-level diagram of Ho3+ in ZBLAN glass with relevant transitions.

Fig. 3
Fig. 3

Fluorescence of a Ho3+-doped fiber at 1.38 μm with a pump wavelength of 650 nm for room temperature (RT) and 77 K.

Fig. 4
Fig. 4

Laser spectra at 3.9 μm and pump wavelengths near 650 nm with different mirrors (fiber length 58 cm; 77 K).

Fig. 5
Fig. 5

Laser spectra at 1.2 μm with different pump powers (λp = 635 nm, fiber length 54.6 cm, mirror set S7/S47, 77 K).

Fig. 6
Fig. 6

Laser spectra at 3.9 μm with different mirrors (λp = 890 nm, fiber length 420 cm).

Fig. 7
Fig. 7

Output intensity at 3.9 μm versus increasing temperature (λp = 638.2 nm, mirror set S121/S124, fiber length 48 cm).

Fig. 8
Fig. 8

Laser characteristic at 3.9 μm in Ho3+ at a pump wavelength of 885 nm (mirror set S120/S124, fiber length 340 cm, 77 K).

Tables (2)

Tables Icon

Table 1 Multiphonon Emission Rate WNR for the Energy Gap ΔE (and Transition Wavelength λ) at Different Temperatures

Tables Icon

Table 2 Transmissivities TS and Reflectivities RS of the Resonator Mirrorsa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ω max = Δ E .
W NR ( 0 ) = C exp ( - α Δ E ) .
W NR ( T ) = W NR ( 0 ) [ exp ( ω / k B T ) exp ( ω / k B T ) - 1 ] P
W NR ( T ) = C exp ( - α Δ E ) [ 1 - exp ( - ω k B T ) ] - Δ E / ω max .

Metrics