Abstract

We show that temperature compensation based on differential thermal expansion between sapphire and fused silica can be used to create a Fabry–Perot cavity with an exceptionally low coefficient of thermal expansion at low temperatures. We describe the design of such a cavity that utilizes shaped fused silica mirrors and a sapphire spacer. The geometry of the fused silica mirror was designed using a finite element model to have a small platform, giving a frequency temperature turning point of 16.6 K. The measured turning point was 16.2 K and the curvature was 6 × 10−10 K−2, both of which were consistent with the model.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature analysis of low-expansion Fabry-Perot cavities

Richard W. Fox
Opt. Express 17(17) 15023-15031 (2009)

Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors

Thomas Legero, Thomas Kessler, and Uwe Sterr
J. Opt. Soc. Am. B 27(5) 914-919 (2010)

Wavelength references for interferometry in air

Richard W. Fox, Brian R. Washburn, Nathan R. Newbury, and Leo Hollberg
Appl. Opt. 44(36) 7793-7801 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription