Abstract

A Fourier-transform spectrometer has been used in a step-scan mode to make time-resolved measurements of the evolving laser pulse in intracavity laser spectroscopy (ILS) experiments. Spectra of broadband dye laser pulses at approximately 615 nm were recorded at relatively high spectral (0.5-cm−1) and temporal (as high as 5-μs) resolution. In the absence of an absorber, the height of the pulse is shown to be proportional to tg0.57 (where tg is the generation time) for generation times as high as 500 μs. The system was constructed for feasibility studies of future use at infrared and near-infrared wavelengths where conventional ILS that uses diode arrays would be either expensive or simply not possible. The CH4 overtone transition at 619.68 nm was used to test the linearity and sensitivity of the system. Comparable performance to conventional ILS systems was demonstrated, as were the advantages of the present system for studies of laser and absorption dynamics.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. A. Garetz, J Lombardi, eds., Advances in Laser Spectroscopy, Vol. 2 (Wiley, New York, 1983).
  2. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, New York, 1975).
  3. P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
    [CrossRef]
  4. G. Hancock, D. E. Heard, “Time-resolved pulsed FTIR emission studies of atom-radical reactions: product chemiluminescence from the O(3P) + CF2(X1A1) reaction,” Chem. Phys. Lett. 158, 167–171 (1989).
    [CrossRef]
  5. R. A. Palmer, C. J. Manning, J. A. Rzepiela, J. M. Widder, J. L. Chao, “Time-resolved spectroscopy using step-scan Fourier transform interferometry,” Appl. Spectrosc. 43, 193–195 (1989).
    [CrossRef]
  6. G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
    [CrossRef]
  7. G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein.
    [CrossRef]
  8. T. J. Johnson, A. Simon, J. M. Weil, G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten nanoseconds to ten seconds,” Appl. Spectrosc. 47, 1376–1381 (1993).
    [CrossRef]
  9. W. Uhmann, A. Becker, C. Taran, F. Siebert, “Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer,” Appl. Spectrosc. 45, 390–397 (1991).
    [CrossRef]
  10. W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
    [CrossRef]
  11. S. Plunkett, J. L. Chao, T. J. Tague, R. A. Palmer, “Time-resolved step-scan FTIR spectroscopy of the photodynamics of carbonmonoxymyoglobin,” Appl. Spectrosc. 49, 702–708 (1995).
    [CrossRef]
  12. C. Peterson, M. J. Kurylo, W. Braun, A. M. Bass, R. A. Keller, “Enhancement of absorption spectra by dye-laser quenching,” J. Opt. Soc. Am. 61, 746–750 (1971).
    [CrossRef]
  13. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).
  14. V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
    [CrossRef]
  15. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971).
    [CrossRef]
  16. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
    [CrossRef]
  17. H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978).
    [CrossRef]
  18. N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985).
    [CrossRef]
  19. V. S. Burakov, “Development of intracavity laser spectroscopy,” J. Appl. Spectrosc. 35, 843–854 (1981).
    [CrossRef]
  20. T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983), pp. 343–367.
  21. S. J. Harris, “Intracavity laser spectroscopy: an old field with new prospects for combustion diagnostics,” Appl. Opt. 23, 1311–1318 (1984).
    [CrossRef] [PubMed]
  22. P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
    [CrossRef]
  23. B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
    [CrossRef]
  24. S. Cheskis, “Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
    [CrossRef]
  25. J. B. McManus, C. E. Kolb, “Long-path intracavity laser for the measurement of atmospheric trace gases,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 340–351 (1991).
    [CrossRef]
  26. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990).
    [CrossRef]
  27. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
    [CrossRef]
  28. V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
    [CrossRef]
  29. M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983).
    [CrossRef]
  30. S. J. Harris, A. M. Weiner, “Continuous wave intracavity dye laser spectroscopy. II. A parametric study,” J. Chem. Phys. 74, 3673–3679 (1981).
    [CrossRef]
  31. E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
    [CrossRef]
  32. F. Stoeckel, G. H. Atkinson, “Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985).
    [CrossRef] [PubMed]
  33. V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
    [CrossRef]
  34. P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
    [CrossRef]

1996 (1)

W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
[CrossRef]

1995 (2)

S. Cheskis, “Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
[CrossRef]

S. Plunkett, J. L. Chao, T. J. Tague, R. A. Palmer, “Time-resolved step-scan FTIR spectroscopy of the photodynamics of carbonmonoxymyoglobin,” Appl. Spectrosc. 49, 702–708 (1995).
[CrossRef]

1994 (1)

B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
[CrossRef]

1993 (4)

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein.
[CrossRef]

T. J. Johnson, A. Simon, J. M. Weil, G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten nanoseconds to ten seconds,” Appl. Spectrosc. 47, 1376–1381 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

1992 (1)

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

1991 (1)

1990 (2)

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990).
[CrossRef]

1989 (4)

G. Hancock, D. E. Heard, “Time-resolved pulsed FTIR emission studies of atom-radical reactions: product chemiluminescence from the O(3P) + CF2(X1A1) reaction,” Chem. Phys. Lett. 158, 167–171 (1989).
[CrossRef]

V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
[CrossRef]

R. A. Palmer, C. J. Manning, J. A. Rzepiela, J. M. Widder, J. L. Chao, “Time-resolved spectroscopy using step-scan Fourier transform interferometry,” Appl. Spectrosc. 43, 193–195 (1989).
[CrossRef]

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

1985 (2)

F. Stoeckel, G. H. Atkinson, “Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985).
[CrossRef] [PubMed]

N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985).
[CrossRef]

1984 (1)

1983 (2)

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983).
[CrossRef]

1981 (2)

S. J. Harris, A. M. Weiner, “Continuous wave intracavity dye laser spectroscopy. II. A parametric study,” J. Chem. Phys. 74, 3673–3679 (1981).
[CrossRef]

V. S. Burakov, “Development of intracavity laser spectroscopy,” J. Appl. Spectrosc. 35, 843–854 (1981).
[CrossRef]

1980 (2)

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

1978 (1)

H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978).
[CrossRef]

1973 (1)

H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[CrossRef]

1971 (2)

J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

C. Peterson, M. J. Kurylo, W. Braun, A. M. Bass, R. A. Keller, “Enhancement of absorption spectra by dye-laser quenching,” J. Opt. Soc. Am. 61, 746–750 (1971).
[CrossRef]

1970 (1)

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Anderson, M. J.

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

Antonov, E. N.

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Atkinson, G. H.

B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
[CrossRef]

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990).
[CrossRef]

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

F. Stoeckel, G. H. Atkinson, “Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985).
[CrossRef] [PubMed]

N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985).
[CrossRef]

Atkinson, H.

H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[CrossRef]

Baev, V. M.

V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
[CrossRef]

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

Bass, A. M.

Becker, A.

Belikova, T. P.

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

Biggs, P.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Brack, T. L.

N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985).
[CrossRef]

Braun, W.

Burakov, V. S.

V. S. Burakov, “Development of intracavity laser spectroscopy,” J. Appl. Spectrosc. 35, 843–854 (1981).
[CrossRef]

Chao, J. L.

Chenevier, M.

M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983).
[CrossRef]

Cheskis, S.

S. Cheskis, “Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
[CrossRef]

Churilov, S. S.

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Clark, H.

H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978).
[CrossRef]

Cvijin, P. V.

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990).
[CrossRef]

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

Dai, H.-L.

G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein.
[CrossRef]

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

Delaney, J. K.

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

Frei, H

W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
[CrossRef]

Gilmore, D. A.

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990).
[CrossRef]

Goldstein, N.

N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, New York, 1975).

Hage, W

W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
[CrossRef]

Hancock, G.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

G. Hancock, D. E. Heard, “Time-resolved pulsed FTIR emission studies of atom-radical reactions: product chemiluminescence from the O(3P) + CF2(X1A1) reaction,” Chem. Phys. Lett. 158, 167–171 (1989).
[CrossRef]

Harris, G. W.

Harris, S. J.

S. J. Harris, “Intracavity laser spectroscopy: an old field with new prospects for combustion diagnostics,” Appl. Opt. 23, 1311–1318 (1984).
[CrossRef] [PubMed]

S. J. Harris, A. M. Weiner, “Continuous wave intracavity dye laser spectroscopy. II. A parametric study,” J. Chem. Phys. 74, 3673–3679 (1981).
[CrossRef]

Harris, T. D.

T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983), pp. 343–367.

Hartland, G. V.

G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein.
[CrossRef]

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

Heard, D.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Heard, D. E.

G. Hancock, D. E. Heard, “Time-resolved pulsed FTIR emission studies of atom-radical reactions: product chemiluminescence from the O(3P) + CF2(X1A1) reaction,” Chem. Phys. Lett. 158, 167–171 (1989).
[CrossRef]

Hunten, D. M.

B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
[CrossRef]

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

Johnson, T. J.

Kachanov, A. A.

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Keller, R. A.

Kim, M

W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
[CrossRef]

Kolb, C. E.

J. B. McManus, C. E. Kolb, “Long-path intracavity laser for the measurement of atmospheric trace gases,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 340–351 (1991).
[CrossRef]

Kovalenko, S. A.

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

Kurylo, M. J.

H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[CrossRef]

C. Peterson, M. J. Kurylo, W. Braun, A. M. Bass, R. A. Keller, “Enhancement of absorption spectra by dye-laser quenching,” J. Opt. Soc. Am. 61, 746–750 (1971).
[CrossRef]

Laufer, A. H.

H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[CrossRef]

Lunine, J. I.

B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
[CrossRef]

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

Manning, C. J.

Mathies, R. A.

W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
[CrossRef]

McManus, J. B.

J. B. McManus, C. E. Kolb, “Long-path intracavity laser for the measurement of atmospheric trace gases,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 340–351 (1991).
[CrossRef]

Melieres, M. A.

M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983).
[CrossRef]

Mendas, I.

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

Mironenko, V. R.

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

Moore, C. B.

H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978).
[CrossRef]

O’Brien, J. J.

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

Pakhomycheva, A.

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Palmer, R. A.

Peterson, C.

Plakhotnik, T. V.

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

Plunkett, S.

Qin, D

G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein.
[CrossRef]

Radak, B. B.

B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
[CrossRef]

Reilly, J. P.

H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978).
[CrossRef]

Rzepiela, J. A.

Sarkisov, I. N.

V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
[CrossRef]

Shirk, J. S.

J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Siebert, F.

Simon, A.

T. J. Johnson, A. Simon, J. M. Weil, G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten nanoseconds to ten seconds,” Appl. Spectrosc. 47, 1376–1381 (1993).
[CrossRef]

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

Siridenkov, E. A.

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

Stoeckel, F.

F. Stoeckel, G. H. Atkinson, “Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985).
[CrossRef] [PubMed]

M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983).
[CrossRef]

Suchkov, A. F.

V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
[CrossRef]

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Sviridenkov, E. A.

V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
[CrossRef]

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Tague, T. J.

Taran, C.

Thrash, J.

J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Titova, L. V.

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Uhmann, W.

von Weyssenhoff, H.

J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

Wayne, R. P.

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Weil, J. M.

Weiner, A. M.

S. J. Harris, A. M. Weiner, “Continuous wave intracavity dye laser spectroscopy. II. A parametric study,” J. Chem. Phys. 74, 3673–3679 (1981).
[CrossRef]

Wells, W. K.

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

Widder, J. M.

Xie, W.

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

Yudson, V. I.

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (4)

Chem. Phys. Lett. (3)

P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989).
[CrossRef]

G. Hancock, D. E. Heard, “Time-resolved pulsed FTIR emission studies of atom-radical reactions: product chemiluminescence from the O(3P) + CF2(X1A1) reaction,” Chem. Phys. Lett. 158, 167–171 (1989).
[CrossRef]

N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985).
[CrossRef]

Int. J. Chem. Kinet. (1)

H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978).
[CrossRef]

J. Appl. Spectrosc. (1)

V. S. Burakov, “Development of intracavity laser spectroscopy,” J. Appl. Spectrosc. 35, 843–854 (1981).
[CrossRef]

J. Chem. Phys. (5)

J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971).
[CrossRef]

H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973).
[CrossRef]

S. Cheskis, “Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995).
[CrossRef]

G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein.
[CrossRef]

S. J. Harris, A. M. Weiner, “Continuous wave intracavity dye laser spectroscopy. II. A parametric study,” J. Chem. Phys. 74, 3673–3679 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein.
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993).
[CrossRef]

B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994).
[CrossRef]

J. Sov. Laser Res. (1)

V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989).
[CrossRef]

JETP Lett. (1)

A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).

Meas. Sci. Technol. (1)

P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990).
[CrossRef]

Opt. Commun. (5)

E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990).
[CrossRef]

D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980).
[CrossRef]

M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983).
[CrossRef]

Rev. Sci. Instrum. (1)

G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992).
[CrossRef]

Sov. J. Quantum Electron. (1)

V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980).
[CrossRef]

Other (4)

B. A. Garetz, J Lombardi, eds., Advances in Laser Spectroscopy, Vol. 2 (Wiley, New York, 1983).

P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, New York, 1975).

J. B. McManus, C. E. Kolb, “Long-path intracavity laser for the measurement of atmospheric trace gases,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 340–351 (1991).
[CrossRef]

T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983), pp. 343–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental apparatus. TTL, transistor–transistor logic.

Fig. 2
Fig. 2

Timing scheme for the FTIR–ILS experiment. An approximate switching time for the AOM is 1 ms with a 50% duty cycle.

Fig. 3
Fig. 3

Time-resolved spectra of the intracavity dye laser pulse for the N2-purged cavity. The total Nyquist bandwidth was 1215 cm−1, with a spectral resolution of 4.0 cm−1 and a temporal resolution (spacing between time slices) of 20 μs. Forty laser shots were averaged at each step.

Fig. 4
Fig. 4

Log–log plot of peak height (left axis) and spectral width (FWHM, right axis) versus generation time for the spectra shown in Fig. 3. The circles are the measured data and the solid curves are the fits to all points between 80 and 500 μs.

Fig. 5
Fig. 5

(a) Time evolution of the ILS pulse through CH4. The displayed slices range from 0 to 180 μs at 20-μs intervals. (b) Comparison of the 190-μs time slices for the ILS experiment: Curve A is for N2 in the cavity and curve B is for CH4. See text for details.

Fig. 6
Fig. 6

Plot of ln(I0/I) versus generation time tg for the 16,137.3-cm−1 CH4 absorption line shown in Fig. 5. See text for details.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( ν ˜ , t ) = I 0 Δ ν ˜ 0 ( γ t g π ) 1 / 2 exp [ - ( ν ˜ - ν ˜ 0 Δ ν ˜ 0 ) 2 γ t g ] ,
I I 0 = exp [ - α ( ν ˜ ) l L c t g ] ,

Metrics