Abstract

A device is described for generating true-time delays optically for microwave signals used in beam steering and beam shaping in phased-array antennas. The device can be adapted to provide delays from picoseconds to nanoseconds. A single, compact unit should provide parallel delays for more than 64 independent antenna elements with a greater than 6-bit resolution. The time delays are produced by multiple reflections in a mirror configuration with continuous refocusing. A single spatial light modulator selects independent optical path lengths for each of the parallel antenna elements. Amplitude control for beam shaping can be integrated into the device. The unit can be made rugged for harsh environments by use of solid-block construction. The operation of the true-time delay device is described, along with the overall system configuration. Preliminary experimental data are given.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
    [CrossRef]
  2. A. Goutzoulis, K. Davies, J. Zomp, P. Hyrcak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
    [CrossRef] [PubMed]
  3. P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
    [CrossRef]
  4. G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
    [CrossRef]
  5. B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).
  6. D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE International Symposium Antennas and Propagation (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 766–769.
  7. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).
  8. D. J. Page, “An introduction to the optical commutator,” IEEE Trans. Antennas Prop. 44, 652–658 (1996).
    [CrossRef]
  9. D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
    [CrossRef]
  10. N. A. Riza, “Polarization-based fiber optic delay lines,” Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 120–129 (1995).
  11. N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
    [CrossRef] [PubMed]
  12. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
    [CrossRef]
  13. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
    [CrossRef]
  14. X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
    [CrossRef]
  15. N. A. Riza, “Transmit–receive time-delay beam-forming optical architecture for phased-array antennas,” Appl. Opt. 30, 4594–4595 (1991).
    [CrossRef] [PubMed]
  16. D. Dolfi, J. P. Huignard, M. Baril, “Optically controlled true time delays for phased array antenna,” Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 152 (1989).
  17. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  18. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
    [CrossRef]
  19. E. O. Schulz-DuBois, “Generation of square lattice of focal points by a modified White cell,” Appl. Opt. 12, 1391–1393 (1973).
    [CrossRef] [PubMed]
  20. E. J. Beiting, “Compact optical pulse train generator,” Appl. Opt. 31, 2642–2644 (1992).
    [CrossRef]
  21. J. J. B. Deaton, J. W. Wagner, “Variable-cavity-length mode-locked Nd:YAG laser for noncontact and spectral control of narrow-band ultrasound,” Appl. Opt. 33, 1051–1058 (1994).
    [CrossRef] [PubMed]
  22. M. J. Ehrlich, J. S. Steckenrider, J. W. Wagner, “System for high-speed time-resolved holography of transient events,” Appl. Opt. 31, 5947–5951 (1992).
    [CrossRef] [PubMed]
  23. S. A. Collins, J. Ambue, E. K. Damon, “Optics for numerical calculation,” in Proceedings of International Commission on Optics 11, Madrid, Spain (International Commission on Optics, 1978).
  24. T. R. Reesor, “The astigmatism of a multiple path absorption cell,” J. Opt. Soc. Am. 41, 1059–1060 (1951).
    [CrossRef]
  25. W. H. Kohn, “Astigmatism and White cells: theoretical considerations on the construction of an anastigmatic White cell,” Appl. Opt. 31, 6757–6764 (1992).
    [CrossRef] [PubMed]
  26. G. J. Rayl, “Multiple traversal absorption cell of minimum volume design,” Appl. Opt. 15, 921–928 (1976).
    [CrossRef] [PubMed]
  27. U. Effron, Spatial Light Modulator Technology (Marcel Dekker, New York, 1995).
  28. N. Collings, J. Gourlay, D. G. Vaasl, H. J. White, C. Stace, G. M. Proudley, “Measurements on ferroelectric liquid-crystal spatial light modulators: contrast ratio and speed,” Appl. Opt. 34, 5928–5931 (1995).
    [CrossRef] [PubMed]
  29. M. G. Roe, K. L. Schehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993).
    [CrossRef]
  30. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
    [CrossRef]
  31. Diplaytech Inc., product literature (Boulder, Colo., 1996).

1997

1996

D. J. Page, “An introduction to the optical commutator,” IEEE Trans. Antennas Prop. 44, 652–658 (1996).
[CrossRef]

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

1995

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

N. Collings, J. Gourlay, D. G. Vaasl, H. J. White, C. Stace, G. M. Proudley, “Measurements on ferroelectric liquid-crystal spatial light modulators: contrast ratio and speed,” Appl. Opt. 34, 5928–5931 (1995).
[CrossRef] [PubMed]

1994

1993

M. G. Roe, K. L. Schehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993).
[CrossRef]

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

1992

1991

1988

A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

1976

1973

1951

1942

Ambue, J.

S. A. Collins, J. Ambue, E. K. Damon, “Optics for numerical calculation,” in Proceedings of International Commission on Optics 11, Madrid, Spain (International Commission on Optics, 1978).

Antoine, J.

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

Ball, G. A.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Baril, M.

D. Dolfi, J. P. Huignard, M. Baril, “Optically controlled true time delays for phased array antenna,” Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 152 (1989).

Beiting, E. J.

Boysel, M.

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

Chang, Y.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Cohen, D. A.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Collings, N.

Collins, S. A.

S. A. Collins, J. Ambue, E. K. Damon, “Optics for numerical calculation,” in Proceedings of International Commission on Optics 11, Madrid, Spain (International Commission on Optics, 1978).

Curtis, D. D.

D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE International Symposium Antennas and Propagation (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 766–769.

Damon, E. K.

S. A. Collins, J. Ambue, E. K. Damon, “Optics for numerical calculation,” in Proceedings of International Commission on Optics 11, Madrid, Spain (International Commission on Optics, 1978).

Davies, K.

Deaton, J. J. B.

Dexter, J. L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

Dolfi, D.

D. Dolfi, J. P. Huignard, M. Baril, “Optically controlled true time delays for phased array antenna,” Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 152 (1989).

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

Effron, U.

U. Effron, Spatial Light Modulator Technology (Marcel Dekker, New York, 1995).

Ehrlich, M. J.

Esman, R. D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Fetterman, H. R.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Forrest, S. M.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

Forrest, S. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Frankel, M. Y.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

Freitag, P. M.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

Glenn, W. H.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Goldberg, L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

Goldsmith, C.

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

Gourlay, J.

Goutzoulis, A.

Granger, P.

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

Handschy, A.

A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

Huignard, J. P.

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

D. Dolfi, J. P. Huignard, M. Baril, “Optically controlled true time delays for phased array antenna,” Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 152 (1989).

Hyrcak, P.

Joffre, P.

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

Johnson, A.

Johnson, K. M.

A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

Jones, V. I.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Kanack, B.

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Kohn, W. H.

Lee, J. J.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Levi, A. G. J.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Lewis, J. B.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Livingston, S.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Loo, R. Y.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Madamopoulos, N.

Magel, G.

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

Maleki, L.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Menni, C.

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

Moddel, G.

A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

Morey, W. W.

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

Newberg, I. L.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

Pagano-Stauffer, L. A.

A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

Page, D. J.

D. J. Page, “An introduction to the optical commutator,” IEEE Trans. Antennas Prop. 44, 652–658 (1996).
[CrossRef]

Parent, M. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Proudley, G. M.

Rayl, G. J.

Reesor, T. R.

Riza, N. A.

Roe, M. G.

M. G. Roe, K. L. Schehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993).
[CrossRef]

Roger, J.

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

Schehrer, K. L.

M. G. Roe, K. L. Schehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993).
[CrossRef]

Schulz-DuBois, E. O.

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Sharpe, L. M.

D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE International Symposium Antennas and Propagation (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 766–769.

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Stace, C.

Steckenrider, J. S.

Steier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Stilwell, D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

Takle, C.

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

Tangonan, G. L.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Vaasl, D. G.

Wagner, J. W.

Wechsberg, M.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

White, H. J.

White, J.

White, J. U.

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Yao, X. S.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Yen, H.-W.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

Zomp, J.

Appl. Opt.

G. J. Rayl, “Multiple traversal absorption cell of minimum volume design,” Appl. Opt. 15, 921–928 (1976).
[CrossRef] [PubMed]

N. A. Riza, “Transmit–receive time-delay beam-forming optical architecture for phased-array antennas,” Appl. Opt. 30, 4594–4595 (1991).
[CrossRef] [PubMed]

E. J. Beiting, “Compact optical pulse train generator,” Appl. Opt. 31, 2642–2644 (1992).
[CrossRef]

W. H. Kohn, “Astigmatism and White cells: theoretical considerations on the construction of an anastigmatic White cell,” Appl. Opt. 31, 6757–6764 (1992).
[CrossRef] [PubMed]

A. Goutzoulis, K. Davies, J. Zomp, P. Hyrcak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

J. J. B. Deaton, J. W. Wagner, “Variable-cavity-length mode-locked Nd:YAG laser for noncontact and spectral control of narrow-band ultrasound,” Appl. Opt. 33, 1051–1058 (1994).
[CrossRef] [PubMed]

N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
[CrossRef] [PubMed]

N. Collings, J. Gourlay, D. G. Vaasl, H. J. White, C. Stace, G. M. Proudley, “Measurements on ferroelectric liquid-crystal spatial light modulators: contrast ratio and speed,” Appl. Opt. 34, 5928–5931 (1995).
[CrossRef] [PubMed]

M. J. Ehrlich, J. S. Steckenrider, J. W. Wagner, “System for high-speed time-resolved holography of transient events,” Appl. Opt. 31, 5947–5951 (1992).
[CrossRef] [PubMed]

E. O. Schulz-DuBois, “Generation of square lattice of focal points by a modified White cell,” Appl. Opt. 12, 1391–1393 (1973).
[CrossRef] [PubMed]

Ferroelectrics

A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
[CrossRef]

IEEE Microwave Guided Wave Lett.

P. M. Freitag, S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
[CrossRef]

G. A. Ball, W. H. Glenn, W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
[CrossRef]

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

IEEE Trans. Antennas Prop.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
[CrossRef]

D. J. Page, “An introduction to the optical commutator,” IEEE Trans. Antennas Prop. 44, 652–658 (1996).
[CrossRef]

J. Opt. Soc. Am.

Opt. Eng.

M. G. Roe, K. L. Schehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993).
[CrossRef]

Other

Diplaytech Inc., product literature (Boulder, Colo., 1996).

S. A. Collins, J. Ambue, E. K. Damon, “Optics for numerical calculation,” in Proceedings of International Commission on Optics 11, Madrid, Spain (International Commission on Optics, 1978).

U. Effron, Spatial Light Modulator Technology (Marcel Dekker, New York, 1995).

D. Dolfi, J. P. Huignard, M. Baril, “Optically controlled true time delays for phased array antenna,” Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 152 (1989).

B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 114–132 (1993).

D. D. Curtis, L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE International Symposium Antennas and Propagation (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 766–769.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE1958, 133–143 (1993).

N. A. Riza, “Polarization-based fiber optic delay lines,” Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 120–129 (1995).

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE2155, 205–217 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Basic White cell. (b) Operation of the White cell: The beam is introduced into the cell by means of an input turning mirror, expands to fill mirror B, and is imaged to a point again on mirror A. (c) The beam expands again, this time filling mirror C, and is focused to a new point on mirror A. C. C., center of curvature.

Fig. 2
Fig. 2

(a) Sequence of spots for an input beam in line with the centers of curvature of mirrors B and C. The optical axis intersects the mirror at its center, coincident with spot 8. (b) Construction used to predict the location of the next spot. The mirror has been made a square section of a spherical mirror. (c) An array of input beams, with beam 6’s sequence highlighted.

Fig. 3
Fig. 3

(a) Type I cell: One beam is shown making two full transits of the cell, or twice the minimum path. (b) Three-dimensional view of a type I cell showing multiple beams. One beam will be used for each antenna element in the radar array.

Fig. 4
Fig. 4

Type II cell consisting of two type I cells that share the SLM as a common mirror and also share the beam splitter.

Fig. 5
Fig. 5

Type III TTD device. The device shown here has a considerably greater range of time delays than does the type II device. The distances b, c, e, and f are optical path lengths.

Fig. 6
Fig. 6

Transition diagram showing the allowed progressions of the beams from mirror to mirror. The beam must always go to mirror B after the input turning mirror (bounce zero).

Fig. 7
Fig. 7

Solid-block construction of the TTD device, shown for the type III device.

Fig. 8
Fig. 8

(a) Transmit microwave TTD system configuration. (b) Receive microwave TTD system configuration.

Fig. 9
Fig. 9

(a) Experimental apparatus. (b) Front view of the light valve and auxiliary mirror.

Fig. 10
Fig. 10

Experimental data: four successive delays of 0, 7.2, 14.0, and 21.3 ns. There are five traces: channels 1 and 4 and memories m1, m2, and m3. Div, division.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

xm, ym=-D2+2m-1δ, -y0, m even, xm, ym=+D2-2m-1δ, y0, m odd,
TAB,C=2R+n-1Svseconds,
Δ=TAB,C-TAE,F,
T=1vei+bm2-i+fj+cm2-j=1vb+cm2+e-bi+f-cj.
T0=1vb+cm2,
Tv=1ve-bi+f-cj.
1ve-b=Δ.
1vf-c=m2Δ.
Tmax-T0=m2-1Δ+m2m2Δ=m2+2m-44Δ.

Metrics