Abstract

We demonstrate the storage of 1000 holograms in a memory architecture that makes use of different wavelengths for recording and readout to reduce the grating decay while retrieving data. Bragg-mismatch problems from the use of two wavelengths are minimized through recording in the image plane and using thin crystals. Peristrophic multiplexing can be combined with angle multiplexing to counter the poorer angular selectivity of thin crystals. Dark conductivity reduces the effectiveness of the dual-wavelength method for nonvolatile readout, and constraints on the usable pixel sizes limit this method to moderate storage densities.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  2. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  3. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  4. D. Brady, K. Hsu, D. Psaltis, “Periodically refreshed multiply exposed photorefractive holograms,” Opt. Lett. 15, 817–819 (1990).
    [CrossRef] [PubMed]
  5. H. Sasaki, Y. Fainman, J. E. Ford, Y. Taketomi, S. Lee, “Dynamic photorefractive optical memory,” Opt. Lett. 16, 1874–1876 (1991).
    [CrossRef] [PubMed]
  6. S. Boj, G. Pauliat, G. Roosen, “Dynamic holographic memory showing readout, refreshing, and updating capabilities,” Opt. Lett. 17, 438–440 (1992).
    [CrossRef] [PubMed]
  7. Y. Qiao, D. Psaltis, “Sampled dynamic holographic memory,” Opt. Lett. 17, 1376–1378 (1992).
    [CrossRef] [PubMed]
  8. H. Külich, “Reconstructing volume holograms without image field losses,” Appl. Opt. 30, 2850–2857 (1991).
    [CrossRef] [PubMed]
  9. R. McRuer, J. Wilde, L. Hesselink, J. Goodman, “Two-wavelength photorefractive dynamic optical interconnect,” Opt. Lett. 14, 1174–1176 (1989).
    [CrossRef] [PubMed]
  10. D. Psaltis, F. Mok, H. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
    [CrossRef] [PubMed]
  11. K. Curtis, A. Pu, D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993–994 (1994).
    [CrossRef] [PubMed]
  12. H. S. Li, “Photorefractive 3-D disks for optical data storage and artificial neural networks,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).
  13. H. Li, D. Psaltis, “Double grating formation in anisotropic photorefractive crystals,” J. Appl. Phys. 71, 1394–1400 (1992).
    [CrossRef]
  14. D. Psaltis, D. Brady, K. Wagner, “Adaptive optical networks using photorefractive crystals,” Appl. Opt. 27, 1752–1759 (1988).
    [CrossRef]
  15. H. Li, D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    [CrossRef] [PubMed]

1994

1992

1991

1990

1989

1988

1974

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

1972

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

1971

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Amodei, J. J.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Bismuth, G.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Boj, S.

Brady, D.

Curtis, K.

Fainman, Y.

Ford, J. E.

Glass, A. M.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Goodman, J.

Hesselink, L.

Hsu, K.

Külich, H.

Lee, S.

Li, H.

Li, H. S.

H. S. Li, “Photorefractive 3-D disks for optical data storage and artificial neural networks,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).

McRuer, R.

Micheron, F.

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Mok, F.

Pauliat, G.

Psaltis, D.

Pu, A.

Qiao, Y.

Rodgers, K. F.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Roosen, G.

Sasaki, H.

Staebler, D. L.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Taketomi, Y.

von der Linde, D.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Wagner, K.

Wilde, J.

Appl. Opt.

Appl. Phys. Lett.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

J. Appl. Phys.

H. Li, D. Psaltis, “Double grating formation in anisotropic photorefractive crystals,” J. Appl. Phys. 71, 1394–1400 (1992).
[CrossRef]

Opt. Lett.

Other

H. S. Li, “Photorefractive 3-D disks for optical data storage and artificial neural networks,” Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Dual-wavelength scheme in transmission geometry with the corresponding k-space diagram for Bragg matching a single grating.

Fig. 2
Fig. 2

k-sphere diagram for the dual-wavelength transmission geometry with a complex signal (assumes λ2 > λ1).

Fig. 3
Fig. 3

Fourier-plane recording: (a) system setup, (b) comparison of input image and reconstruction at λ2, (c) reconstructions with three slightly detuned angles of the λ2 reference beam R 2.

Fig. 4
Fig. 4

Image-plane recording: (a) system setup and (b) comparison of input image and reconstruction at λ2.

Fig. 5
Fig. 5

(a) Reconstruction of data mask with pixel sizes varying from 50 to 200 µm2, recorded in a 4.6-mm-thick crystal, recorded with λ1′ = 488 nm and read with λ2′ = 633 nm. (b) Plot of SNR versus pixel size from the image in (a) compared with SNR measured from the data mask imaged through the crystal and when reconstructed with the original λ1 reference (images not shown).

Fig. 6
Fig. 6

(a) Reconstruction of data mask with pixel widths varying from 100 to 250 µm, recorded in a 4.6-mm-thick crystal. (b) Same image reconstructed from a recording in a 250-µm-thick crystal.

Fig. 7
Fig. 7

Variation of recording slope (A ow) with peristrophic and angular crystal tilts.

Fig. 8
Fig. 8

System setup used for the dual-wavelength experiments.

Fig. 9
Fig. 9

Model for determining the compensated exposure schedule; it allows variation in the recording rate at each location but assumes that all holograms share a common decay rate.

Fig. 10
Fig. 10

Experimental and predicted distributions for the diffraction efficiencies of 1000 holograms when recorded with the conventional exposure schedule.

Fig. 11
Fig. 11

Diffraction efficiencies for 1000 holograms recorded with the compensated exposure schedule.

Fig. 12
Fig. 12

(a) Sample images from 1000-hologram experiment with (b) corresponding histograms for λ1 and λ2 reconstructions.

Fig. 13
Fig. 13

(a) Absorption spectrum and (b) decay curves for the LiNbO3:Fe crystal.

Fig. 14
Fig. 14

(a) Absorption spectrum and (b) decay curves for the LiNbO3:Fe:Ce crystal.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

sin12ϕr+ϕsλ2=sin12θr+θsλ1, ϕr-ϕs=θr-θs.
Idiffsinc2L2πΔkz,
Δkz=2πcos ϕrλ2+cos θs+Δθs-cos θrλ1-1λ22-sin ϕrλ2-sin θr+sin θs+Δθsλ121/2.
sin Δθso=λ1 cos ϕsL sinϕr-θr,
W=2Fn sin Δθso1-n2 sin2 Δθso1/2,
sin α=λδx.
δx,min=L sinϕr-θrcos ϕs.
SNR=μ1-μ0σ12+σ0212,
Δϕ=λ2Lcos ϕssinϕr+ϕs,
Δψ=2λ2δysin ϕs+sin ϕr,
Am=Am+1, Ao,m1-exp-tm/τw,mexp-tm+1/τe=Ao,m+11-exp-tm+1/τw,m+1,
tm=-τw,m ln1-Ao,m+1Ao,mexptm+1/τe×1-exp-tm+1/τw,m+1,
tm=Ao/τwm+1Ao/τwmtm+1 exptm+1/τe,
exp-t/τe=exp-t/τeexp-t/τe,dark,
D=NϕNψNpxNpyA,
A=NpxδxNpyδy,
D=NϕNψδxδy,
Φ=2 tan-1A-W2F.
Nϕ=Φ2Δϕ.
δy=λ2sintan-112f-number.
δx=L tan ϕs.
D=sinϕs+ϕrλ22 sin ϕstan-1A-W2F×sintan-112f-number.

Metrics