Abstract

The use of liquid-crystal panels from a commercially available Sanyo video projector as spatial light modulators in a standard joint transform correlator system is investigated. It is found that the flatness distortion of the panels disturbs the output correlation signal in general. Since the reported solutions for the flatness corrections are either expensive (liquid gates) or suffer from low light efficiency (holographic techniques), we have investigated a possibility to minimize the influence of these distortions on the correlation output without flatness correction. First, we quantify optical flatness across the transparent panel area, and then we measure the effects of flatness distortion by changing the display location of the input objects and the resulting joint power spectrum. It is found that the correlation peak is 1 order of magnitude more sensitive to phase distortions of the input scene than to the same distortions of the joint power spectrum. Choosing the flattest location on the panel allows the utilization of the panels to be demonstrated through recognition of cuneiform inscription signs.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-K. Liu, J. A. Davis, R. A. Lilly, “Optical-data-processing properties of a liquid-crystal television spatial light modulator,” Opt. Lett. 10, 635–637 (1985).
    [CrossRef] [PubMed]
  2. D. A. Gregory, “Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator,” Appl. Opt. 25, 467–469 (1986).
    [CrossRef] [PubMed]
  3. G. Paul-Hus, Y. Sheng, “Optical on-axis real-time phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
    [CrossRef]
  4. Y. Ishii, T. Takahashi, M. Kobayashi, “Real-time phase-only matched filtering with dual liquid-crystal spatial light modulators,” Opt. Commun. 32, 153–160 (1996).
    [CrossRef]
  5. F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).
    [CrossRef] [PubMed]
  6. A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurements using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
    [CrossRef]
  7. F. Ahmed, M. A. Karim, “Filter-feature-based rotation-invariant joint Fourier transform correlator,” Appl. Opt. 34, 7556–7560 (1995).
    [CrossRef] [PubMed]
  8. F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
    [CrossRef]
  9. H.-K. Liu, S. Y. Kung, J. A. Davis, “Real-time optical associative retrieval technique,” Opt. Eng. 25, 853–856 (1986).
    [CrossRef]
  10. D. Casasent, S. F. Xia, “Phase correction of light modulators,” Opt. Lett. 11, 398–400 (1986).
    [CrossRef] [PubMed]
  11. F. Mok, J. Diep, H.-K. Liu, D. Psaltis, “Real-time computer-generated hologram by means of a liquid-crystal television spatial light modulator,” Opt. Lett. 11, 748–750 (1986).
    [CrossRef] [PubMed]
  12. J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
    [CrossRef]
  13. C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
    [CrossRef]
  14. C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
    [CrossRef]
  15. K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
    [CrossRef]
  16. H. Sakai, J. Ohtsubo, “Image subtraction using polarization modulation of liquid-crystal television,” Appl. Opt. 31, 6852–6858 (1992).
    [CrossRef] [PubMed]
  17. K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
    [CrossRef]
  18. M. Yamauchi, T. Eiju, “Optimization of twisted nematic liquid crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19–25 (1995).
    [CrossRef]
  19. N. Demoli, H. Gruber, U. Dahms, G. Wernicke, “Characterization of the cuneiform signs by the use of a multifunctional optoelectronic device,” Appl. Opt. 35, 5811–5820 (1996).
    [CrossRef] [PubMed]

1996 (2)

Y. Ishii, T. Takahashi, M. Kobayashi, “Real-time phase-only matched filtering with dual liquid-crystal spatial light modulators,” Opt. Commun. 32, 153–160 (1996).
[CrossRef]

N. Demoli, H. Gruber, U. Dahms, G. Wernicke, “Characterization of the cuneiform signs by the use of a multifunctional optoelectronic device,” Appl. Opt. 35, 5811–5820 (1996).
[CrossRef] [PubMed]

1995 (3)

F. Ahmed, M. A. Karim, “Filter-feature-based rotation-invariant joint Fourier transform correlator,” Appl. Opt. 34, 7556–7560 (1995).
[CrossRef] [PubMed]

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

M. Yamauchi, T. Eiju, “Optimization of twisted nematic liquid crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19–25 (1995).
[CrossRef]

1994 (2)

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

1993 (2)

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

G. Paul-Hus, Y. Sheng, “Optical on-axis real-time phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

1992 (2)

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

H. Sakai, J. Ohtsubo, “Image subtraction using polarization modulation of liquid-crystal television,” Appl. Opt. 31, 6852–6858 (1992).
[CrossRef] [PubMed]

1990 (2)

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurements using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

1987 (1)

1986 (4)

1985 (1)

Ahmed, F.

Casasent, D.

Dahms, U.

Davis, J. A.

Demoli, N.

Diep, J.

Eiju, T.

M. Yamauchi, T. Eiju, “Optimization of twisted nematic liquid crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19–25 (1995).
[CrossRef]

Gregory, D. A.

Gruber, H.

Hudson, T. D.

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

Ishii, Y.

Y. Ishii, T. Takahashi, M. Kobayashi, “Real-time phase-only matched filtering with dual liquid-crystal spatial light modulators,” Opt. Commun. 32, 153–160 (1996).
[CrossRef]

Jones, B. K.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Jutamulia, S.

Karim, M. A.

Kirsch, J. C.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Knopp, J.

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Kobayashi, M.

Y. Ishii, T. Takahashi, M. Kobayashi, “Real-time phase-only matched filtering with dual liquid-crystal spatial light modulators,” Opt. Commun. 32, 153–160 (1996).
[CrossRef]

Kung, S. Y.

H.-K. Liu, S. Y. Kung, J. A. Davis, “Real-time optical associative retrieval technique,” Opt. Eng. 25, 853–856 (1986).
[CrossRef]

Lilly, R. A.

Lin, T. W.

Liu, H.-K.

Lu, G.

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

Lu, K.

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Lu, M.

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

McMillen, D. K.

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

Mok, F.

Monroe, S. E.

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

Ogiwara, A.

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurements using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

Ohkubo, K.

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

Ohtsubo, J.

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

H. Sakai, J. Ohtsubo, “Image subtraction using polarization modulation of liquid-crystal television,” Appl. Opt. 31, 6852–6858 (1992).
[CrossRef] [PubMed]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurements using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

Paul-Hus, G.

G. Paul-Hus, Y. Sheng, “Optical on-axis real-time phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

Psaltis, D.

Sakai, H.

H. Sakai, J. Ohtsubo, “Image subtraction using polarization modulation of liquid-crystal television,” Appl. Opt. 31, 6852–6858 (1992).
[CrossRef] [PubMed]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurements using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

Saleh, B. E. A.

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Sheng, Y.

G. Paul-Hus, Y. Sheng, “Optical on-axis real-time phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

Soutar, C.

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

Takahashi, T.

Y. Ishii, T. Takahashi, M. Kobayashi, “Real-time phase-only matched filtering with dual liquid-crystal spatial light modulators,” Opt. Commun. 32, 153–160 (1996).
[CrossRef]

Thie, M. W.

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

Wernicke, G.

Xia, S. F.

Yamauchi, M.

M. Yamauchi, T. Eiju, “Optimization of twisted nematic liquid crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19–25 (1995).
[CrossRef]

Yin, S.

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

Yu, F. T. S.

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1987).
[CrossRef] [PubMed]

Appl. Opt. (5)

Opt. Commun. (4)

K. Ohkubo, J. Ohtsubo, “Evaluation of LCTV as a spatial light modulator,” Opt. Commun. 102, 116–124 (1993).
[CrossRef]

M. Yamauchi, T. Eiju, “Optimization of twisted nematic liquid crystal panels for spatial light phase modulation,” Opt. Commun. 115, 19–25 (1995).
[CrossRef]

A. Ogiwara, H. Sakai, J. Ohtsubo, “Real-time optical joint transform correlator for velocity measurements using clipped speckle intensity,” Opt. Commun. 78, 322–326 (1990).
[CrossRef]

Y. Ishii, T. Takahashi, M. Kobayashi, “Real-time phase-only matched filtering with dual liquid-crystal spatial light modulators,” Opt. Commun. 32, 153–160 (1996).
[CrossRef]

Opt. Eng. (7)

G. Paul-Hus, Y. Sheng, “Optical on-axis real-time phase-dominant correlator using liquid crystal television,” Opt. Eng. 32, 2165–2172 (1993).
[CrossRef]

F. T. S. Yu, M. Lu, G. Lu, S. Yin, T. D. Hudson, D. K. McMillen, “Optimum target detection using a spatial-domain bipolar composite filter with a joint transform correlator,” Opt. Eng. 34, 3200–3207 (1995).
[CrossRef]

H.-K. Liu, S. Y. Kung, J. A. Davis, “Real-time optical associative retrieval technique,” Opt. Eng. 25, 853–856 (1986).
[CrossRef]

J. C. Kirsch, D. A. Gregory, M. W. Thie, B. K. Jones, “Modulation characteristics of the Epson liquid crystal television,” Opt. Eng. 31, 963–969 (1992).
[CrossRef]

C. Soutar, K. Lu, “Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,” Opt. Eng. 33, 2704–2712 (1994).
[CrossRef]

C. Soutar, S. E. Monroe, J. Knopp, “Measurement of the complex transmittance of the Epson liquid crystal television,” Opt. Eng. 33, 1061–1068 (1994).
[CrossRef]

K. Lu, B. E. A. Saleh, “Theory and design of the liquid crystal TV as an optical spatial phase modulator,” Opt. Eng. 29, 240–246 (1990).
[CrossRef]

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Microscopic view of the rear side of a SLCP.

Fig. 2
Fig. 2

Modulation curves for the SLCP’s. The open and filled circles denote the values for the amplitude-mostly and phase-mostly operating modes, respectively: (a) Red panel: ○(ψ1, ψ2), (-45, 55); ● (ψ1, ψ2), (18, -45). (b) Green panel: ○(ψ1, ψ2), (54, -50); ● (ψ1, ψ2), (15, -40). (c) Blue panel: ○(ψ1, ψ2), (-38, 39); ● (ψ1, ψ2), (25, -35).

Fig. 3
Fig. 3

Scheme of the holographic setup: M, mirror; BS, beam splitter; BE, beam expander; L, lens; MP, mirror with piezoelectric transducer; O, object; H, hologram; Sc, screen; DIP, digital image processing.

Fig. 4
Fig. 4

Phase distribution resulting from the flatness of the SLCP’s: (a) red, (b) green, and (c) blue.

Fig. 5
Fig. 5

Phase distribution for the blue panel with the voltage switched on: (a) Constant GSL across the whole panel. (b) One half of the panel with GSL = 0 and the other with GSL = 255.

Fig. 6
Fig. 6

Intensity distribution resulting from the flatness of the SLCP’s: (a) red, (b) green, and (c) blue.

Fig. 7
Fig. 7

Division of the blue panel into 8 × 6 sectors.

Fig. 8
Fig. 8

JPS obtained from the location on the blue SLCP: (a) without the panel, (b) location A, (c) location B, and (d) location C.

Fig. 9
Fig. 9

Recognition of the CI sign I: (a) Input of the JTC with the average sign Iav (upper half) and with the scene containing one sample of the sign I (lower half). (b) JPS of the input scene shown in (a). (c) Intensity distribution detected at the output plane of the JTC.

Tables (4)

Tables Icon

Table 1 Physical Parameters of the SLCP’s

Tables Icon

Table 2 Average Values of the Phase-Distortion Distribution for the Blue SLCP (in λ, where λ = 0.633 µm)

Tables Icon

Table 3 Standard Deviation of the Average Values from Table 2 (in λ, where λ = 0.633 µm)

Tables Icon

Table 4 Normalized Correlation-Peak Intensities (in Percent)

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

tx, y=tpixx, ycombxa,ybrectxc,yd×tpanx, yrectxA,yB,
tpixx, y=ApixV, α, ψ1, ψ2expiϕpixV, α, ψ1, ψ2,
tpanx, y=Apanx, yexpiϕpanx, y,
Tu, v=Tpixu, vcombau, bvsin ccu, dvTpanu, vsin cAu, Bv,
fx, y=rx, y-b+sx, y+b,
Fu, v2=Ru, v2+Su, v2+Ru, vexp-i2πbv×Su, vexpi2πbv*+Ru, vexp-i2πbv*×Su, vexpi2πbv,
Tu, vTpixu, vTpanu, v.
gcorx, y=rx, y-b *sx, y+b*
gcorx, y=rx, y-b * sx, y+b*Tpanx, y.
gcorx, y=rx, y-b · tpanx, y * sx, y+b · tpanx, y*.
gcorx, y=rx, y-b · tpanx, y * sx, y+b · tpanx, y*Tpanx, y.

Metrics