Abstract

We present here the experimental and numerical results to demonstrate the superior performance of optical wavelet-matched filtering over conventional matched filtering. For this purpose, the biomolecule material bacteriorhodopsin (bR) as the recording media and the improved dual-axis joint transform correlator configuration as the preferred optical setup have been used. Compared with the dual-axis joint Fourier transform correlator, the dual-axis joint wavelet transform correlator provides better correlation performance.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Hampp, R. Thoma, D. Oesterhelt, C. Bräauchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96→Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
    [CrossRef] [PubMed]
  2. R. R. Birge, “Optical random access memory based on bacteriorhodopsin,” Bull. Am. Phys. Soc. 34, 483 (1989).
  3. R. Thoma, N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
    [CrossRef] [PubMed]
  4. O. Werner, B. Fischer, A. Lewis, I. Nebenzahl, “Saturable absorption, wave mixing, and phase conjugation with bacteriorhodopsin,” Opt. Lett. 15, 1117–1119 (1990).
    [CrossRef] [PubMed]
  5. N. Hampp, R. Thoma, C. Bräuchle, D. Oesterhelt, “Real-time holographic pattern recognition with bacteriorhodopsin films,” in Holographics International’92, Y. N. Denisyuk, F. Wyrowski, eds., Proc. SPIE1732, 260–270 (1992).
  6. R. Thoma, N. Hampp, “Real-time holographic correlation of two video signals by using bacteriorhodopsin films,” Opt. Lett. 17, 1158–1160 (1992).
    [CrossRef] [PubMed]
  7. E. Freysz, B. Pouligny, F. Argoul, A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64, 745–748 (1990).
    [CrossRef] [PubMed]
  8. Y. Sheng, D. Roberge, H. Szu, “Optical wavelet transform,” Opt. Eng. 31, 1840–1845 (1992).
    [CrossRef]
  9. D. Roberge, Y. Sheng, “Optical composite wavelet-matched filters,” Opt. Eng. 33, 2290–2295 (1994).
    [CrossRef]
  10. Y. Sheng, D. Roberge, H. Szu, T. Lu, “Optical wavelet matched filters for shift-invariant pattern recognition,” Opt. Lett. 18, 299–301 (1993).
    [CrossRef] [PubMed]
  11. J. Widjaja, Y. Tomita, “Optical wavelet-matched filtering by four-wave mixing in photorefractive media,” Opt. Commun. 117, 123–126 (1995).
    [CrossRef]
  12. R. Thoma, M. Partz, N. Hampp, “All-optical nonlinear holographic correlation using bacteriorhodopsin films,” Opt. Eng. 5, 1345–1351 (1995).
  13. B. Kumar, L. Hassebrook, “Performance measures for correlation filters,” Appl. Opt. 29, 2997–3006 (1990).
    [CrossRef] [PubMed]

1995

J. Widjaja, Y. Tomita, “Optical wavelet-matched filtering by four-wave mixing in photorefractive media,” Opt. Commun. 117, 123–126 (1995).
[CrossRef]

R. Thoma, M. Partz, N. Hampp, “All-optical nonlinear holographic correlation using bacteriorhodopsin films,” Opt. Eng. 5, 1345–1351 (1995).

1994

D. Roberge, Y. Sheng, “Optical composite wavelet-matched filters,” Opt. Eng. 33, 2290–2295 (1994).
[CrossRef]

1993

1992

1991

1990

1989

R. R. Birge, “Optical random access memory based on bacteriorhodopsin,” Bull. Am. Phys. Soc. 34, 483 (1989).

Argoul, F.

E. Freysz, B. Pouligny, F. Argoul, A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64, 745–748 (1990).
[CrossRef] [PubMed]

Arneodo, A.

E. Freysz, B. Pouligny, F. Argoul, A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64, 745–748 (1990).
[CrossRef] [PubMed]

Birge, R. R.

R. R. Birge, “Optical random access memory based on bacteriorhodopsin,” Bull. Am. Phys. Soc. 34, 483 (1989).

Bräauchle, C.

Bräuchle, C.

R. Thoma, N. Hampp, C. Bräuchle, D. Oesterhelt, “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett. 16, 651–653 (1991).
[CrossRef] [PubMed]

N. Hampp, R. Thoma, C. Bräuchle, D. Oesterhelt, “Real-time holographic pattern recognition with bacteriorhodopsin films,” in Holographics International’92, Y. N. Denisyuk, F. Wyrowski, eds., Proc. SPIE1732, 260–270 (1992).

Fischer, B.

Freysz, E.

E. Freysz, B. Pouligny, F. Argoul, A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64, 745–748 (1990).
[CrossRef] [PubMed]

Hampp, N.

Hassebrook, L.

Kumar, B.

Lewis, A.

Lu, T.

Nebenzahl, I.

Oesterhelt, D.

Partz, M.

R. Thoma, M. Partz, N. Hampp, “All-optical nonlinear holographic correlation using bacteriorhodopsin films,” Opt. Eng. 5, 1345–1351 (1995).

Pouligny, B.

E. Freysz, B. Pouligny, F. Argoul, A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64, 745–748 (1990).
[CrossRef] [PubMed]

Roberge, D.

D. Roberge, Y. Sheng, “Optical composite wavelet-matched filters,” Opt. Eng. 33, 2290–2295 (1994).
[CrossRef]

Y. Sheng, D. Roberge, H. Szu, T. Lu, “Optical wavelet matched filters for shift-invariant pattern recognition,” Opt. Lett. 18, 299–301 (1993).
[CrossRef] [PubMed]

Y. Sheng, D. Roberge, H. Szu, “Optical wavelet transform,” Opt. Eng. 31, 1840–1845 (1992).
[CrossRef]

Sheng, Y.

D. Roberge, Y. Sheng, “Optical composite wavelet-matched filters,” Opt. Eng. 33, 2290–2295 (1994).
[CrossRef]

Y. Sheng, D. Roberge, H. Szu, T. Lu, “Optical wavelet matched filters for shift-invariant pattern recognition,” Opt. Lett. 18, 299–301 (1993).
[CrossRef] [PubMed]

Y. Sheng, D. Roberge, H. Szu, “Optical wavelet transform,” Opt. Eng. 31, 1840–1845 (1992).
[CrossRef]

Szu, H.

Thoma, R.

Tomita, Y.

J. Widjaja, Y. Tomita, “Optical wavelet-matched filtering by four-wave mixing in photorefractive media,” Opt. Commun. 117, 123–126 (1995).
[CrossRef]

Werner, O.

Widjaja, J.

J. Widjaja, Y. Tomita, “Optical wavelet-matched filtering by four-wave mixing in photorefractive media,” Opt. Commun. 117, 123–126 (1995).
[CrossRef]

Appl. Opt.

Bull. Am. Phys. Soc.

R. R. Birge, “Optical random access memory based on bacteriorhodopsin,” Bull. Am. Phys. Soc. 34, 483 (1989).

Opt. Commun.

J. Widjaja, Y. Tomita, “Optical wavelet-matched filtering by four-wave mixing in photorefractive media,” Opt. Commun. 117, 123–126 (1995).
[CrossRef]

Opt. Eng.

R. Thoma, M. Partz, N. Hampp, “All-optical nonlinear holographic correlation using bacteriorhodopsin films,” Opt. Eng. 5, 1345–1351 (1995).

Y. Sheng, D. Roberge, H. Szu, “Optical wavelet transform,” Opt. Eng. 31, 1840–1845 (1992).
[CrossRef]

D. Roberge, Y. Sheng, “Optical composite wavelet-matched filters,” Opt. Eng. 33, 2290–2295 (1994).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

E. Freysz, B. Pouligny, F. Argoul, A. Arneodo, “Optical wavelet transform of fractal aggregates,” Phys. Rev. Lett. 64, 745–748 (1990).
[CrossRef] [PubMed]

Other

N. Hampp, R. Thoma, C. Bräuchle, D. Oesterhelt, “Real-time holographic pattern recognition with bacteriorhodopsin films,” in Holographics International’92, Y. N. Denisyuk, F. Wyrowski, eds., Proc. SPIE1732, 260–270 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of a DAJWTC for real-time pattern recognition with bR films.

Fig. 2
Fig. 2

Flow charts of (a) numerical simulation of DAJFTC process and (b) numerical simulation of DAJWTC process. The asterisk (*) denotes the complex conjugate; ⊗ denotes multiply.

Fig. 3
Fig. 3

Correlation outputs: (a) photographed from the monitor for DAJWTC and (b) expressed in a three-dimensional plot for DAJWTC; (c) photographed from the monitor for DAJFTC and (d) expressed in a three-dimensional plot for DAJFTC.

Fig. 4
Fig. 4

Correlation outputs from numerical simulation expressed in three-dimensional plots for (a) DAJWTC and (b) DAJFTC.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

wfsx, sy, x, y=-fx, yh*sx,syx-x, y-y×dxdy=fx, yhsx,syx, y,
hsx,syx, y=1sxsyhxsx, ysy,
cx, y=-wtx, ywr*x-x, y-ydxdy,
cx, y=-Tu, vHsx,syu, vR*u, vH*sx,sy*u, v×exp-i2πxu+yvdudv=-Tu, vR*u, vHsx,syu, v2×exp-i2πxu+yvdudv,
Pam=1λ1fTu, vexp-j2πfu sin θ1+Ru, vexp-j2πfu sin θ1,
AtransGu, vHsx,syu, v2expj2πfu sin θ2expj2πfu sin θ2Hsx,syu, v2×Tu, v2+Ru, v2+Tu, vR*u, vexp-j4π2fu sin θ1+T*u, vRu, vexpj4π2fu sin θ1.
Aout1λ12λ2f3δx3+f sin θ1, y3wtwt*+wr*wr+wtwr*δ×x3-2f sin θ2, y3+wt*wrδ×x3+2f sin θ2, y3,
PCE=y02i=0Nyi2, PRMSR=y021NΩi=Ωyi2,
RPCE=PCEwPCEf, RPRMSR=PRMSRwPRMSRf, RFWHM=FWHMwFWHMf.

Metrics