Abstract

An imaging scheme through scattering media in which parametric image amplification is used is presented. An image of a resolution chart through a solution of latex microspheres with an attenuation of 22 mean free paths is obtained with a resolution of 20 µm. The evolution of the signal-to-noise ratio with respect to the medium attenuation is studied and compared with a rough modeling of the imaging process.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Profio, “Light transport in tissue,” Appl. Opt. 28, 2216–2222 (1989).
    [CrossRef] [PubMed]
  2. B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
    [CrossRef]
  3. E. B. De Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
    [CrossRef]
  4. J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
    [CrossRef]
  5. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh, “Experimental images of heterogeneous media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1990).
    [CrossRef]
  6. R. Cubeddu, A. Pifferti, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on realistic tissue phantoms: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
    [CrossRef]
  7. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdamis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography technique,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef]
  8. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
    [CrossRef]
  9. M. Bashkansky, C. L. Adler, J. Reintjes, “Coherently amplified Raman Polarization gate for imaging through scattering media,” Opt. Lett. 19, 350–352 (1994).
    [CrossRef]
  10. A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 4045–406 (1995).
    [CrossRef]
  11. S. Andersson-Engels, R. Berg, S. Svanberg, “Time Resolved transillumination for medical diagnosis,” Opt. Lett. 15, 1179–1181 (1990).
  12. L. Wang, P. P. Ho, X. Liang, H. Dai, R. R. Alfano, “Kerr-Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18, 241–243 (1993).
    [CrossRef]
  13. J. Watson, P. Georges, T. Lépine, B. Alonzi, A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20, 231–233 (1995).
    [CrossRef]
  14. G. Faris, M. Banks, “Upconverting time gate for imaging through highly scattering media,” Opt. Lett. 19, 1813–1815 (1995).
  15. F. Devaux, E. Lantz, H. Maillotte, “Imaging through scattering media by parametric image amplification,” J. Nonlinear Opt. Phys. Mater. 5, 413–417 (1996).
    [CrossRef]
  16. F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).
  17. F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun 118, 25–27 (1995).
    [CrossRef]
  18. C. Borhen, D. Huffman, Absorption and Scattering of Light by Small Particle (Wiley, New York, 1983).

1996

E. B. De Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
[CrossRef]

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

F. Devaux, E. Lantz, H. Maillotte, “Imaging through scattering media by parametric image amplification,” J. Nonlinear Opt. Phys. Mater. 5, 413–417 (1996).
[CrossRef]

R. Cubeddu, A. Pifferti, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging on realistic tissue phantoms: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1996).
[CrossRef]

1995

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun 118, 25–27 (1995).
[CrossRef]

A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 4045–406 (1995).
[CrossRef]

G. Faris, M. Banks, “Upconverting time gate for imaging through highly scattering media,” Opt. Lett. 19, 1813–1815 (1995).

J. Watson, P. Georges, T. Lépine, B. Alonzi, A. Brun, “Imaging in diffuse media with ultrafast degenerate optical parametric amplification,” Opt. Lett. 20, 231–233 (1995).
[CrossRef]

1994

1993

1991

1990

1989

Adler, C. L.

Alfano, R. R.

Alonzi, B.

Andersson-Engels, S.

Avrillier, S.

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

Banks, M.

Barry, N. P.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Bashkansky, M.

Berg, R.

Boas, D. A.

Borhen, C.

C. Borhen, D. Huffman, Absorption and Scattering of Light by Small Particle (Wiley, New York, 1983).

Brun, A.

Chance, B.

Chen, H.

Chen, Y.

Corey, R.

A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 4045–406 (1995).
[CrossRef]

Cubeddu, R.

Dai, H.

Dainty, J. C.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

De Haller, E. B.

E. B. De Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
[CrossRef]

Devaux, F.

F. Devaux, E. Lantz, H. Maillotte, “Imaging through scattering media by parametric image amplification,” J. Nonlinear Opt. Phys. Mater. 5, 413–417 (1996).
[CrossRef]

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun 118, 25–27 (1995).
[CrossRef]

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Dilworth, D.

Doreau, P. A.

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Faris, G.

French, P. M. W.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Gélebart, B.

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

Georges, P.

Gindre, d.

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Ho, P. P.

Huffman, D.

C. Borhen, D. Huffman, Absorption and Scattering of Light by Small Particle (Wiley, New York, 1983).

Hyde, S. C. W.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Jacques, S. L.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Jones, R.

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Lacourt, A.

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Lantz, E.

F. Devaux, E. Lantz, H. Maillotte, “Imaging through scattering media by parametric image amplification,” J. Nonlinear Opt. Phys. Mater. 5, 413–417 (1996).
[CrossRef]

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun 118, 25–27 (1995).
[CrossRef]

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Laurent, T.

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Leith, E.

Lépine, T.

Liang, X.

Lopez, J.

Maillotte, H.

F. Devaux, E. Lantz, H. Maillotte, “Imaging through scattering media by parametric image amplification,” J. Nonlinear Opt. Phys. Mater. 5, 413–417 (1996).
[CrossRef]

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

O’Leary, M. A.

Ollivier, J. P.

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

Pifferti, A.

Profio, A. E.

Reintjes, J.

Saulnier, P.

A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 4045–406 (1995).
[CrossRef]

Schmidt, A.

A. Schmidt, R. Corey, P. Saulnier, “Imaging through random media by use of low-coherence optical heterodyning,” Opt. Lett. 20, 4045–406 (1995).
[CrossRef]

Svanberg, S.

Taroni, P.

Tinet, E.

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

Torricelli, A.

Tualle, J.-M.

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

Valdamis, J.

Valentini, G.

Wang, L.

Watson, J.

Wilson, B. C.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

Yodh, A. G.

Appl. Opt.

IEEE J. Quantum Electron.

B. C. Wilson, S. L. Jacques, “Optical reflectance and transmittance of tissues: principles and applications,” IEEE J. Quantum Electron. 26, 2186–2199 (1990).
[CrossRef]

J. Biomed. Opt.

E. B. De Haller, “Time-resolved transillumination and optical tomography,” J. Biomed. Opt. 1, 7–17 (1996).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

F. Devaux, E. Lantz, H. Maillotte, “Imaging through scattering media by parametric image amplification,” J. Nonlinear Opt. Phys. Mater. 5, 413–417 (1996).
[CrossRef]

Nonlinear Opt.

F. Devaux, E. Lantz, A. Lacourt, d. Gindre, H. Maillotte, P. A. Doreau, T. Laurent, “Picosecond parametric amplification of a monochromatic image,” Nonlinear Opt. 11, 25–27 (1995).

Opt. Commun

F. Devaux, E. Lantz, “Ultrahigh-speed imaging by parametric image amplification,” Opt. Commun 118, 25–27 (1995).
[CrossRef]

Opt. Commun.

J.-M. Tualle, B. Gélebart, E. Tinet, S. Avrillier, J. P. Ollivier, “Real time and coefficients evaluation from time and space resolved reflectance measurements in biological tissues,” Opt. Commun. 128, 216–221 (1996).
[CrossRef]

S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, P. M. W. French, “High resolution depth resolved imaging through scattering media using time-resolved holography,” Opt. Commun. 122, 111–116 (1996).
[CrossRef]

Opt. Lett.

Other

C. Borhen, D. Huffman, Absorption and Scattering of Light by Small Particle (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. The signal is horizontally polarized by P1 while P2 and P3 select the vertically polarized idler for time-gating.

Fig. 2
Fig. 2

Parametric amplification through a latex bead solution of 22 mfp: (a) Image of the resolution chart with amplification, without the scattering medium; (b) image of the resolution chart with the scattering medium of 22 mfp, without amplification, no line is resolved; (c)–(i) images of the resolution chart with amplification and with the diffusing medium. Between two images, the pump delay is shifted by 6.6 ps. Image (f) corresponds to the best signal-to-noise ratio of 1.85.

Fig. 3
Fig. 3

Images obtained with the optimum pump delay for three different optical thicknesses: (a) 12 mfp, (b) 15 mfp, (c) 22 mfp.

Fig. 4
Fig. 4

Schematic description of the signals for the model. The signification of the symbols is given in the text.

Fig. 5
Fig. 5

Comparison of the theoretical signal-to-noise ratio curves with the experimental data: (a) 20 mfp, (b) 22 mfp.

Tables (1)

Tables Icon

Table 1 Calculated Parameters of the Diffused Signal for Two Scattering Media

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

it=I0 exp-μsLexp-t2/σt2,
dt=D exp-t-Δt2/σd2,
pt=P0 exp-t2/σp2.
Git=sinhgLc×pt1/2/22,
Eiτ=it×Git-τdt,
Edτ=dt×R-1×Gst-τ+Git-τdt.
S/Ntheoτ=Eiτ/Edτ.

Metrics