Abstract

Optimal laser light delivery into turbid biological tissues was studied by using Monte Carlo simulations based on the delta-scattering technique. The goal was to deliver efficiently the maximum amount of optical power into buried tumors being treated while avoiding potential damage to normal tissue caused by strong optical power deposition underneath the tissue surface illuminated by the laser beam. The buried tumors were considered to have much higher absorption than the surrounding normal tissue because of selective uptake of the absorption-enhancement dye. The power delivering efficiency to buried tumors was investigated for various diameters of the laser beam. An optimal beam diameter was estimated to achieve the maximum product of the power coupling efficiency and the power delivered to the buried tumor. The distribution of power deposition was simulated for single-beam delivery and multiple-beam delivery as well. The simulated results showed that with an appropriate dye enhancement and an optimal laser delivery configuration, a high selectivity for laser treatment of tumor could be achieved.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Keijzer, J. W. Pickering, M. J. C. van Gemert, “Laser beam diameter for port wine stain treatment,” Lasers Surg. Med. 11, 601–605 (1991).
    [CrossRef] [PubMed]
  2. Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
    [CrossRef] [PubMed]
  3. B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  4. S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  5. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. SPIEIS5, 102–111 (1989).
  6. S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
    [CrossRef]
  7. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://biomed.tamu.edu/∼lw .
    [CrossRef]
  8. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” to be published in Comput. Methods Prog. Biomed. (1997).
    [CrossRef]
  9. I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).
  10. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  11. L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
    [CrossRef] [PubMed]
  12. L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
  13. W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
    [CrossRef] [PubMed]
  14. W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
    [CrossRef]
  15. W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
    [CrossRef]
  16. W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
    [CrossRef] [PubMed]

1997

W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
[CrossRef] [PubMed]

1996

W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
[CrossRef]

1995

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://biomed.tamu.edu/∼lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

1992

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

1991

M. Keijzer, J. W. Pickering, M. J. C. van Gemert, “Laser beam diameter for port wine stain treatment,” Lasers Surg. Med. 11, 601–605 (1991).
[CrossRef] [PubMed]

1989

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

1983

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Adam, G. A.

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Adams, R. L.

W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
[CrossRef]

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

Bartels, K. E.

W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
[CrossRef]

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

Carubelli, R.

W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
[CrossRef] [PubMed]

Chen, Q.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

Chen, W. R.

W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
[CrossRef]

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

Chopp, M.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

Dereski, M. O.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

Dickey, D. T.

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Heaton, S.

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

Hetzel, F. W.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

Higgins, A. K.

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

Jacques, S. L.

L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://biomed.tamu.edu/∼lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” to be published in Comput. Methods Prog. Biomed. (1997).
[CrossRef]

S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[CrossRef]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. SPIEIS5, 102–111 (1989).

Keijzer, M.

M. Keijzer, J. W. Pickering, M. J. C. van Gemert, “Laser beam diameter for port wine stain treatment,” Lasers Surg. Med. 11, 601–605 (1991).
[CrossRef] [PubMed]

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. SPIEIS5, 102–111 (1989).

Koblinger, L.

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

Lux, I.

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

Nordquist, R. E.

W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
[CrossRef]

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

Patterson, M. S.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Pickering, J. W.

M. Keijzer, J. W. Pickering, M. J. C. van Gemert, “Laser beam diameter for port wine stain treatment,” Lasers Surg. Med. 11, 601–605 (1991).
[CrossRef] [PubMed]

Prahl, S. A.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. SPIEIS5, 102–111 (1989).

van Gemert, M. J. C.

M. Keijzer, J. W. Pickering, M. J. C. van Gemert, “Laser beam diameter for port wine stain treatment,” Lasers Surg. Med. 11, 601–605 (1991).
[CrossRef] [PubMed]

Wang, L.-H.

L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://biomed.tamu.edu/∼lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).

S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” to be published in Comput. Methods Prog. Biomed. (1997).
[CrossRef]

Welch, A. J.

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. SPIEIS5, 102–111 (1989).

Wilson, B. C.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wyman, D. R.

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://biomed.tamu.edu/∼lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” to be published in Comput. Methods Prog. Biomed. (1997).
[CrossRef]

Appl. Opt.

Cancer Lett.

W. R. Chen, R. L. Adams, S. Heaton, D. T. Dickey, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,” Cancer Lett. 88, 15–19 (1995).
[CrossRef] [PubMed]

W. R. Chen, R. L. Adams, K. E. Bartels, R. E. Nordquist, “Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser,” Cancer Lett. 94, 125–131 (1996).
[CrossRef]

W. R. Chen, R. L. Adams, A. K. Higgins, K. E. Bartels, R. E. Nordquist, “Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study,” Cancer Lett. 98, 169–173 (1995).
[CrossRef]

W. R. Chen, R. L. Adams, R. Carubelli, R. E. Nordquist, “Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment,” Cancer Lett. 115, 25–30 (1997).
[CrossRef] [PubMed]

Comput. Methods Prog. Biomed.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multilayered tissues,” Comput. Methods Prog. Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from URL: http://biomed.tamu.edu/∼lw .
[CrossRef]

IEEE Trans. Biomed. Eng.

S. T. Flock, B. C. Wilson, D. R. Wyman, M. S. Patterson, “Monte-Carlo modeling of light-propagation in highly scattering tissues I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Lasers Surg. Med.

M. Keijzer, J. W. Pickering, M. J. C. van Gemert, “Laser beam diameter for port wine stain treatment,” Lasers Surg. Med. 11, 601–605 (1991).
[CrossRef] [PubMed]

Med. Phys.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

B. C. Wilson, G. A. Adam, “Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Photochem. Photobiol.

Q. Chen, B. C. Wilson, M. O. Dereski, M. S. Patterson, M. Chopp, F. W. Hetzel, “Effects of light beam size on fluence distribution and depth of necrosis in superficially applied photodynamic therapy of normal rat brain,” Photochem. Photobiol. 56, 379–384 (1992).
[CrossRef] [PubMed]

Other

S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, G. J. Muller, D. H. Sliney, eds., Proc. SPIEIS5, 102–111 (1989).

S. L. Jacques, L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical Thermal Response of Laser Irradiated Tissue, A. J. Welch, M. J. C. van Gemert, eds. (Plenum, New York, 1995), pp. 73–100.
[CrossRef]

L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multilayered tissues,” to be published in Comput. Methods Prog. Biomed. (1997).
[CrossRef]

I. Lux, L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (CRC Press, Boca Raton, Fla., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configurations of the biological tissue and laser beams: (a) single-beam delivery to a wide tissue slab; (b) multiple-beam delivery to a tissue cube. The tumor was a sphere centered in the background tissue and aligned with the center of the laser beam. In both cases, the optical properties of the background tissue were: absorption coefficient, μa = 0.1 cm-1; scattering coefficient, μs = 100 cm -1; anisotropy, g = 0.9. The optical properties of the tumor were: μa = 1 cm-1, μs = 100 cm-1, and g = 0.9. The diameter of the tumor was 1 cm. The thickness of (a) the tissue slab and (b) the side of the tissue cube were both 3 cm.

Fig. 2
Fig. 2

Power absorption Ptumor (squares) by the tumor and maximum power deposition Qmax (circles) as a function of the radius of the laser beam in single-beam delivery to a tissue slab while the power of the incident laser beam Ps (diamonds) was set to 1 W. The fit to Qmax by Eq. (5) is shown by the solid curve. Refer to Fig. 1(a) for the optical and geometric parameters.

Fig. 3
Fig. 3

Diamonds, power of the incident laser beam Ps; solid curve, fit to Ps for a radius greater than 4 cm. Squares, power absorption by the tumor Ptumor. Circles, power coupling efficiency αmax. Triangles, product of the power coupling efficiency and power absorption by the tumor αtumorPtumor as a function of the radius of the laser beam in the single-beam delivery to a tissue slab while the maximum power deposition Qmax was kept constant at 1 W/cm3. Refer to Fig. 1(a) for the optical and geometric parameters.

Fig. 4
Fig. 4

Schematic of single-beam delivery for the derivation of the estimated optimal radius of the laser beam.

Fig. 5
Fig. 5

False-color plots of the deposited power density distributions in W/cm3 in the tissue cube in log scale. The radii of the beam were (a) 0 cm, (b) 0.5 cm, and (c) 1 cm. Each column plots for one through four-beam delivery. The power of each incident laser beam Ps was set to 1 W. Refer to Fig. 1(b) for the optical and geometric parameters.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R=-lnξ/μm,
rk=rk-1+Ruk-1,
1-μRe/μm=μIm/μm
μm1/μm=μRe1/μRe,
Qmax=0.156r-1.70,
Ps=34.0+2.86r2.
ro=δ2dt-2Lt+δ1/2,
Qmax=0.156r-1.70=0.156r-20.85ϕ0.85.
Lt=1/μa+μs1-g=0.099 cm
δ=3μaμa+μs1-g1/2=0.57 cm.

Metrics