Abstract

An optical fiber temperature sensor, based on the fluorescence intensity ratio from the 2F5/2a and 2F5/2b Stark sublevels in ytterbium-doped silica fiber, has been investigated. Results of a sensor prototype demonstrate an accuracy near 1 °C in a 600 °C temperature range. Changes in the fluorescence intensity ratio because of variation in pump power, pump wavelength, and induced fiber bending loss are demonstrated to be small, supporting development of a practical sensor based on the technique described.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescence Thermometry (Chapman & Hall, London, 1995).
  2. H. Berthou, C. K. Jorgensen, “Optical-fiber temperature sensor based on up-conversion excited fluorescence,” Opt. Lett. 15, 1100–1102 (1990).
    [CrossRef] [PubMed]
  3. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
    [CrossRef] [PubMed]
  4. E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-dynamic-range temperature-point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 7, 1349–1353 (1995).
    [CrossRef]
  5. E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “1.2-µm transitions in erbium-doped fibers: a possibility of quasi-distributed temperature sensors,” Appl. Opt. 34, 4196–4199 (1995).
    [CrossRef] [PubMed]
  6. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium doped silica fibers for intrinsic fiber optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
    [CrossRef] [PubMed]
  7. S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.
  8. E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.
  9. G. W. Baxter, G. Monnom, E. Maurice, “Thermal variation of absorption in Yb3+-doped silica fiber for high-temperature sensor applications,” in Fiber Optic and Laser Sensors, R. P. DePaula, J. W. Berthold, eds., Proc. SPIE2510, 293–296 (1995).
    [CrossRef]
  10. D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
    [CrossRef]
  11. P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
    [CrossRef]

1995 (3)

1994 (1)

1990 (1)

1989 (1)

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

Baxter, G. W.

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-dynamic-range temperature-point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 7, 1349–1353 (1995).
[CrossRef]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “1.2-µm transitions in erbium-doped fibers: a possibility of quasi-distributed temperature sensors,” Appl. Opt. 34, 4196–4199 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium doped silica fibers for intrinsic fiber optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[CrossRef] [PubMed]

S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

G. W. Baxter, G. Monnom, E. Maurice, “Thermal variation of absorption in Yb3+-doped silica fiber for high-temperature sensor applications,” in Fiber Optic and Laser Sensors, R. P. DePaula, J. W. Berthold, eds., Proc. SPIE2510, 293–296 (1995).
[CrossRef]

Berthou, H.

Collins, S. F.

S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

Dussardier, B.

Grattan, K. T. V.

K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescence Thermometry (Chapman & Hall, London, 1995).

Hanna, D. C.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Jorgensen, C. K.

Maurice, E.

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium doped silica fibers for intrinsic fiber optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “1.2-µm transitions in erbium-doped fibers: a possibility of quasi-distributed temperature sensors,” Appl. Opt. 34, 4196–4199 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-dynamic-range temperature-point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 7, 1349–1353 (1995).
[CrossRef]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[CrossRef] [PubMed]

G. W. Baxter, G. Monnom, E. Maurice, “Thermal variation of absorption in Yb3+-doped silica fiber for high-temperature sensor applications,” in Fiber Optic and Laser Sensors, R. P. DePaula, J. W. Berthold, eds., Proc. SPIE2510, 293–296 (1995).
[CrossRef]

S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

Monnom, G.

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-dynamic-range temperature-point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 7, 1349–1353 (1995).
[CrossRef]

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “1.2-µm transitions in erbium-doped fibers: a possibility of quasi-distributed temperature sensors,” Appl. Opt. 34, 4196–4199 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Erbium doped silica fibers for intrinsic fiber optic temperature sensors,” Appl. Opt. 34, 8019–8025 (1995).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19, 990–992 (1994).
[CrossRef] [PubMed]

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

G. W. Baxter, G. Monnom, E. Maurice, “Thermal variation of absorption in Yb3+-doped silica fiber for high-temperature sensor applications,” in Fiber Optic and Laser Sensors, R. P. DePaula, J. W. Berthold, eds., Proc. SPIE2510, 293–296 (1995).
[CrossRef]

Ostrowsky, D. B.

Percival, R. M.

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Perry, I. R.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Petreski, B. P.

S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

Saïssy, A.

Smart, R. G.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Suni, P. J.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Townsend, J. E.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Tropper, A. C.

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Wade, S. A.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.

Zhang, Z. Y.

K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescence Thermometry (Chapman & Hall, London, 1995).

Appl. Opt. (2)

J. Lightwave Technol. (1)

E. Maurice, G. Monnom, D. B. Ostrowsky, G. W. Baxter, “High-dynamic-range temperature-point sensor using green fluorescence intensity ratio in Er-doped silica fiber,” J. Lightwave Technol. 7, 1349–1353 (1995).
[CrossRef]

Opt. Commun. (1)

D. C. Hanna, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, A. C. Tropper, “Efficient superfluorescence emission at 974 nm and 1040 nm from an Yb-doped fiber,” Opt. Commun. 72, 230–234 (1989).
[CrossRef]

Opt. Lett. (2)

Other (5)

K. T. V. Grattan, Z. Y. Zhang, Fiber Optic Fluorescence Thermometry (Chapman & Hall, London, 1995).

S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, G. W. Baxter, “Temperature sensing using the thermalization of the 3P0 and 3P1 levels of praseodymium,” in Proceedings of the 20th Australian Conference on Optical Fiber Technology, Coolum (Institution of Radio and Electronics Engineers, Sydney, 1995), pp. 331–334.

E. Maurice, G. Monnom, G. W. Baxter, S. A. Wade, B. P. Petreski, S. F. Collins, “Blue LED-pumped point temperature sensor based on a fluorescence intensity ratio in Pr3+: ZBLAN glass,” in Proceedings of the 11th Optical Fiber Sensors Conference, Sapporo (Japan Society of Applied Physics, Tokyo, 1996, pp. 188–191.

G. W. Baxter, G. Monnom, E. Maurice, “Thermal variation of absorption in Yb3+-doped silica fiber for high-temperature sensor applications,” in Fiber Optic and Laser Sensors, R. P. DePaula, J. W. Berthold, eds., Proc. SPIE2510, 293–296 (1995).
[CrossRef]

P. J. Suni, D. C. Hanna, R. M. Percival, I. R. Perry, R. G. Smart, J. E. Townsend, A. C. Tropper, “Lasing characteristics of ytterbium, thulium and other rare-earth doped silica based fibers,” in Fiber Laser Sources and Amplifiers, M. J. F. Digonnet, ed., Proc. SPIE1171, 244–260 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectrum of a 2000-ppm Yb3+-doped silica fiber at room temperature and the partial energy scheme of the Yb3+ ion.

Fig. 2
Fig. 2

Yb3+ emission spectra at various temperatures between 20 and 600 °C.

Fig. 3
Fig. 3

Natural logarithm of the R ratio of the 910- and 1030-nm peak intensities versus the inverse of the absolute temperature. The solid line is a linear fit to these data.

Fig. 4
Fig. 4

Sensor prototype: (a) The two components of the counterpropagating spectrum issued from port 2 of the coupler are separated by a dichroic mirror and focused on two silicon detectors. (b) Transmission spectrum of the dichroic mirror (continuous curve) compared with the Yb3+ emission spectrum at 600 °C (dotted curve).

Fig. 5
Fig. 5

(a) Variation of the R ratio from 30 °C to 610 °C (circles). The continuous line is a fourth-order polynomial fit. (b) Temperature uncertainty ΔT determined as the difference between the measured data and a polynomial fit (see text), corresponding to an average deviation of 0.6 °C.

Fig. 6
Fig. 6

(a) Evolution of the R ratio, normalized to its average value, versus the pump power (room temperature). (b) Evolution of the R ratio, normalized to its average value, versus the pump wavelength (room temperature). (c) Evolution of the R ratio (open circles) and the total fluorescence intensity (solid circles) versus the bending radius of the fiber at room temperature. The solid and dotted lines have been added as an aid to the eye. The fluorescence intensity is expressed as a fraction of the value obtained when the fiber was not stressed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R=σbσa exp-ΔE/kT,
S=1RRT=ΔEkT2.

Metrics