Abstract

A complex grating decay process is observed at elevated temperatures as predicted by a recently proposed three-energy-level model. We have also measured thermal stability of fiber gratings of both positive and negative index changes in a boron-codoped germanosilicate fiber in order to characterize the energy levels of the system and to predict grating lifetimes. The negative index gratings are found to be able to operate at 300 °C for more than 25 years without significant degradation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed by a 193 nm excimer laser,” Opt. Lett 21, 2032–2034 (1996).
    [CrossRef] [PubMed]
  2. P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
    [CrossRef]
  3. V. B. Sulimov, V. O. Sokolov, E. M. Dianov, B. Poumellec, “Photoinduced structural transformation in silica glass: mechanism for UV-written refractive index gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washingon, D.C., 1995), PD3-1-5.
  4. C. G. Askins, M. A. Putnam, E. J. Friebele, “Photobleaching of broadband absorption associated with formation of single-pulse fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series, (Optical Society of America, Washington, D.C., 1995), PD2-1-5.
  5. T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
    [CrossRef]
  6. D. L. Williams, R. P. Smith, “Accelerated lifetime tests on UV written intracore gratings in boron germanium codoped silica fiber,” Electron. Lett. 31, 2120–2121 (1995).
    [CrossRef]

1996 (1)

L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed by a 193 nm excimer laser,” Opt. Lett 21, 2032–2034 (1996).
[CrossRef] [PubMed]

1995 (1)

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on UV written intracore gratings in boron germanium codoped silica fiber,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

1994 (2)

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Askins, C. G.

C. G. Askins, M. A. Putnam, E. J. Friebele, “Photobleaching of broadband absorption associated with formation of single-pulse fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series, (Optical Society of America, Washington, D.C., 1995), PD2-1-5.

Bayon, J. F.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Bernage, P.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Dianov, E. M.

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, B. Poumellec, “Photoinduced structural transformation in silica glass: mechanism for UV-written refractive index gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washingon, D.C., 1995), PD3-1-5.

Dong, L.

L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed by a 193 nm excimer laser,” Opt. Lett 21, 2032–2034 (1996).
[CrossRef] [PubMed]

Douay, M.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Friebele, E. J.

C. G. Askins, M. A. Putnam, E. J. Friebele, “Photobleaching of broadband absorption associated with formation of single-pulse fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series, (Optical Society of America, Washington, D.C., 1995), PD2-1-5.

Georges, T.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Legoubin, S.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Liu, W. F.

L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed by a 193 nm excimer laser,” Opt. Lett 21, 2032–2034 (1996).
[CrossRef] [PubMed]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Monerie, M.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Niay, P.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Poumellec, B.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, B. Poumellec, “Photoinduced structural transformation in silica glass: mechanism for UV-written refractive index gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washingon, D.C., 1995), PD3-1-5.

Putnam, M. A.

C. G. Askins, M. A. Putnam, E. J. Friebele, “Photobleaching of broadband absorption associated with formation of single-pulse fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series, (Optical Society of America, Washington, D.C., 1995), PD2-1-5.

Reekie, L.

L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed by a 193 nm excimer laser,” Opt. Lett 21, 2032–2034 (1996).
[CrossRef] [PubMed]

Smith, R. P.

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on UV written intracore gratings in boron germanium codoped silica fiber,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

Sokolov, V. O.

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, B. Poumellec, “Photoinduced structural transformation in silica glass: mechanism for UV-written refractive index gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washingon, D.C., 1995), PD3-1-5.

Sulimov, V. B.

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, B. Poumellec, “Photoinduced structural transformation in silica glass: mechanism for UV-written refractive index gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washingon, D.C., 1995), PD3-1-5.

Williams, D. L.

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on UV written intracore gratings in boron germanium codoped silica fiber,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

Xie, W. X.

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Electron. Lett. (1)

D. L. Williams, R. P. Smith, “Accelerated lifetime tests on UV written intracore gratings in boron germanium codoped silica fiber,” Electron. Lett. 31, 2120–2121 (1995).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, D. Monroe, “Decay of ultraviolet-induced fibre Bragg gratings,” J. Appl. Phys. 76, 73–80 (1994).
[CrossRef]

Opt. Commun. (1)

P. Niay, P. Bernage, S. Legoubin, M. Douay, W. X. Xie, J. F. Bayon, T. Georges, M. Monerie, B. Poumellec, “Behavior of spectral transmission of Bragg gratings written in germania-doped fibers: writing and erasing experiments using pulsed or cw uv exposure,” Opt. Commun. 113, 176–192 (1994).
[CrossRef]

Opt. Lett (1)

L. Dong, W. F. Liu, L. Reekie, “Negative index gratings formed by a 193 nm excimer laser,” Opt. Lett 21, 2032–2034 (1996).
[CrossRef] [PubMed]

Other (2)

V. B. Sulimov, V. O. Sokolov, E. M. Dianov, B. Poumellec, “Photoinduced structural transformation in silica glass: mechanism for UV-written refractive index gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series (Optical Society of America, Washingon, D.C., 1995), PD3-1-5.

C. G. Askins, M. A. Putnam, E. J. Friebele, “Photobleaching of broadband absorption associated with formation of single-pulse fiber Bragg gratings,” in Photosensitivity and Quadratic Nonlinearity in Glass Waveguides, Vol. 22 of 1995 Technical Digest Series, (Optical Society of America, Washington, D.C., 1995), PD2-1-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the three-energy-level system.

Fig. 2
Fig. 2

Decay of gratings with varying levels of positive index and negative index changes.

Fig. 3
Fig. 3

Remaining population n(x) and its stretched exponential and power law fittings.

Fig. 4
Fig. 4

Decay of gratings formed mainly by positive index changes at different temperatures and power law fittings to the decay.

Fig. 5
Fig. 5

Power law parameter A for the positive index change gratings against temperature T.

Fig. 6
Fig. 6

Power law parameter α for the positive index change gratings against temperature T.

Fig. 7
Fig. 7

Decay of gratings formed mainly by negative index changes at different temperatures and power law fittings to the decay.

Fig. 8
Fig. 8

Power law parameter A for the negative index change gratings against temperature T.

Fig. 9
Fig. 9

Power law parameter α for the negative index change gratings against temperature T.

Fig. 10
Fig. 10

Prediction of grating lifetimes.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

gE, t=g0Eexp-νEt,
νE=ν0 exp-E/kBT.
Nt=0g0Eexp-ν0t exp-E/kBTdE.
exp-ν0t exp-E/kBT0 when E<Ed,  exp-ν0t exp-E/kBT1 when E>Ed,
Ed=kBT lnν0tln 2.
nx=1-1π-xexp-w2dw,
α=2.4kBTΔE,  A=exp-2.4E0ΔEexp2.4ΔE lnν0ln2kBT.
nt=11+exp2.4Ed-E0/ΔE,

Metrics