Abstract

Hollow cylindrical waveguide sensors permit conventional capillary injection techniques for flowing precise volumes of a liquid sample through the sensor while exciting and collecting fluorescence by use of evanescent fields. Both a ray-optics model and experimental data show that fluorescence collected from bulk or thin-layer fluorescent samples increases strongly as the numerical aperture (N.A.) increases and is maximized when the N.A. of the excitation–collection optics matches the waveguide N.A. The dependence of fluorescence on N.A. closely resembled that reported previously for solid cylindrical waveguides. Mode mixing reduced the strength of this dependence and should be minimized to increase collected fluorescence.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Kao, J. Biwersi, A. S. Verkman, “Fiber optic halide sensor based on fluorescence quenching,” in Fiber Optic Medical and Fluorescent Sensors and Applications, D. R. Hansman, F. P. Milanovich, G. G. Vurek, D. R. Walt, eds., Proc. SPIE1648, 194–201 (1992).
    [CrossRef]
  2. R. P. Ekins, “Competitive, noncompetitive and multianalyte microspot immunoassays,” in Immunochemistry of Solid-Phase Immunoassay, J. E. Butler, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 105–139.
  3. T. R. Glass, S. Lackie, T. Hirschfeld, “Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluoresensors,” Appl. Opt. 26, 2181–2187 (1987).
    [CrossRef] [PubMed]
  4. J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
    [CrossRef]
  5. B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
    [CrossRef]
  6. O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
    [CrossRef]
  7. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 13–63.
  8. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).
  9. C. K. Carniglia, L. Mandel, K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. 62, 479–486 (1972).
    [CrossRef]
  10. E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Change, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,” Appl. Opt. 18, 862–868 (1979).
    [CrossRef]
  11. W. F. Love, L. J. Button, “Optical characteristics of optic evanescent wave sensors,” in Chemical, Biochemical and Environmental Applications of Fibers, R. A. Lieberman, ed., Proc. SPIE990, 175–180 (1988).
    [CrossRef]
  12. P. Evennett, “Kohler illumination: a simple interpretation,” Proc. R. Microsc. Soc. 28, 10–13 (1994).
  13. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, Fla., 1986).
  14. E. H. Hellen, D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337–350 (1987).
    [CrossRef]
  15. J. D. Kraus, Electromagnetics, 3rd ed. (McGraw-Hill, New York, 1984).

1996 (1)

O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
[CrossRef]

1994 (2)

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

P. Evennett, “Kohler illumination: a simple interpretation,” Proc. R. Microsc. Soc. 28, 10–13 (1994).

1987 (2)

1985 (1)

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

1979 (1)

1972 (1)

Andrade, J. D.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Axelrod, D.

Benner, R. E.

Biwersi, J.

H. P. Kao, J. Biwersi, A. S. Verkman, “Fiber optic halide sensor based on fluorescence quenching,” in Fiber Optic Medical and Fluorescent Sensors and Applications, D. R. Hansman, F. P. Milanovich, G. G. Vurek, D. R. Walt, eds., Proc. SPIE1648, 194–201 (1992).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).

Button, L. J.

W. F. Love, L. J. Button, “Optical characteristics of optic evanescent wave sensors,” in Chemical, Biochemical and Environmental Applications of Fibers, R. A. Lieberman, ed., Proc. SPIE990, 175–180 (1988).
[CrossRef]

Carniglia, C. K.

Change, R. K.

Drexhage, K. H.

Ekins, R. P.

R. P. Ekins, “Competitive, noncompetitive and multianalyte microspot immunoassays,” in Immunochemistry of Solid-Phase Immunoassay, J. E. Butler, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 105–139.

Evennett, P.

P. Evennett, “Kohler illumination: a simple interpretation,” Proc. R. Microsc. Soc. 28, 10–13 (1994).

Fenn, J. B.

Glass, T. R.

Gregonis, D. E.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 13–63.

Hellen, E. H.

Hirschfeld, T.

Kao, H. P.

H. P. Kao, J. Biwersi, A. S. Verkman, “Fiber optic halide sensor based on fluorescence quenching,” in Fiber Optic Medical and Fluorescent Sensors and Applications, D. R. Hansman, F. P. Milanovich, G. G. Vurek, D. R. Walt, eds., Proc. SPIE1648, 194–201 (1992).
[CrossRef]

Kraus, J. D.

J. D. Kraus, Electromagnetics, 3rd ed. (McGraw-Hill, New York, 1984).

Lackie, S.

Lee, E.-H.

Lin, J. N.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Love, W. F.

W. F. Love, L. J. Button, “Optical characteristics of optic evanescent wave sensors,” in Chemical, Biochemical and Environmental Applications of Fibers, R. A. Lieberman, ed., Proc. SPIE990, 175–180 (1988).
[CrossRef]

Mandel, L.

Newby, K.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Van Wagenan, R. A.

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

Verkman, A. S.

H. P. Kao, J. Biwersi, A. S. Verkman, “Fiber optic halide sensor based on fluorescence quenching,” in Fiber Optic Medical and Fluorescent Sensors and Applications, D. R. Hansman, F. P. Milanovich, G. G. Vurek, D. R. Walt, eds., Proc. SPIE1648, 194–201 (1992).
[CrossRef]

Weigl, B. H.

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

Wolfbeis, O. S.

O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
[CrossRef]

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

Anal. Chem. (1)

B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Electron Devices (1)

J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Proc. R. Microsc. Soc. (1)

P. Evennett, “Kohler illumination: a simple interpretation,” Proc. R. Microsc. Soc. 28, 10–13 (1994).

Trends Anal. Chem. (1)

O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996).
[CrossRef]

Other (7)

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 13–63.

R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).

H. P. Kao, J. Biwersi, A. S. Verkman, “Fiber optic halide sensor based on fluorescence quenching,” in Fiber Optic Medical and Fluorescent Sensors and Applications, D. R. Hansman, F. P. Milanovich, G. G. Vurek, D. R. Walt, eds., Proc. SPIE1648, 194–201 (1992).
[CrossRef]

R. P. Ekins, “Competitive, noncompetitive and multianalyte microspot immunoassays,” in Immunochemistry of Solid-Phase Immunoassay, J. E. Butler, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 105–139.

R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, Fla., 1986).

W. F. Love, L. J. Button, “Optical characteristics of optic evanescent wave sensors,” in Chemical, Biochemical and Environmental Applications of Fibers, R. A. Lieberman, ed., Proc. SPIE990, 175–180 (1988).
[CrossRef]

J. D. Kraus, Electromagnetics, 3rd ed. (McGraw-Hill, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Hollow cylindrical waveguide sensor. A, Structure of the sensor; B, coordinate system for describing the path of a light ray in the waveguide.

Fig. 2
Fig. 2

Schematic of epifluorescence optical setup for the excitation and collection of fluorescence and the preparation of the waveguide sensor.

Fig. 3
Fig. 3

Experimental and simulation data for the signal collected from a fluorescent bulk sample. Data points are the average of four experiments from three different capillary sizes: +, 100/360; ×, 150/360; and ○, 250/360-µm inner/outer diameter. Simulation data (solid curve) are shown only for the 100/360-µm capillary size because simulation data for the three capillary sizes overlap. Data for each capillary size was normalized to the same value for comparison to the simulation data.

Fig. 4
Fig. 4

Experimental and simulation data for the signal collected from a fluorescent thin-film sample. Data were collected from a capillary with a 100/360-µm inner/outer diameter, ×, and rescaled for comparison with the simulation data (solid curve).

Fig. 5
Fig. 5

Comparison of intensity profiles of the emergent cones at different launch N.A.’s. The height of each profile was normalized to the same value for comparison. Projections were collected from a screen placed 8 cm from the capillary tip, and profiles were taken through the center of each projection shown. Dark marks in the projections are for calibration.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

S=kAeEc,
sin ϕ=r/asin β,
sin ξ=r/bsin β.
cos θ=sin αcos ϕ.
g=b cos ξ±a2-b2 sin2 ξ1/2.
g=b2-r2 sin2 β1/2-a2-r2 sin2 β1/2.
Nα, β, r=L/cos α/2g/sin α=L tan α2b2-r2 sin2 β1/2-a2-r2 sin2 β1/2.
dbulkθ=n3n1λ1+gθcos θ2πn12-n32sin2 θ-n3/n121/2,
gθ=2n12 sin2 θ-n32n12+n32sin2 θ-n32,
dPrr sin α cos α drdα.
Ae bulkαmaxab02π0αmaxdbulkθNα, β, rdPrab0π/20αmax×r sin3 α1r sin β/a21/2cos2 α+r sin α sin β/a2n3/n12 1/2b2r2 sin2 β1/2a2r2 sin2 β1/2 dαdβdr,
dthinθ/d=2n2n11+fθcos θn12-n32,
fθ=1+n3/n24sin2 θ-n3/n121+n3/n12sin2 θ-n3/n12,
Aefilmαmaxab02π0αmaxrsin α cos αdthinθ×Nα, β, rdαdβdr0αmaxsin3 αdα=132-3 cos αmax+cos3 αmax.
Eevanescent/Eincident2=2 cos2 θ1-n3/n121+gθ
Eevanescent/Eincident2=2 cos2 θ1-n3/n121+fθ
Ecαmaxab02π0αmaxEevanescent/Eincident2×Nα, β, rdαdβdr0αmaxcos2 θ tan αdα=-sin2 αmax2-lncos αmax.

Metrics