Abstract

A Fizeau interferometer utilizes a multimode laser as a light source for testing thin transparent plate samples. As a result of multimode linear laser operation, interference fringes are obtained only when the optical path difference between two surfaces is equal to twice a multiple of the laser’s effective cavity length. For three parallel surfaces, we can either adjust their separations or select a laser such that only two of the three surfaces meet the requirement of twice a multiple of the laser’s effective cavity length.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takada, I. Yokohama, K. Chida, J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt. 26, 1603–1606 (1987).
    [CrossRef] [PubMed]
  2. C. Hitzenberger, “Measurement of cornel thickness by low-coherence interferometry,” Appl. Opt. 31, 6637–6642 (1992).
    [CrossRef] [PubMed]
  3. R. Dandliker, E. Zimmermann, G. Frosio, “Electronically scanned white-light interferometry: a novel noise-resistant signal processing,” Opt. Lett. 17, 679–681 (1992).
    [CrossRef] [PubMed]
  4. P. de Groot, R. Smythe, L. Deck, “Laser diodes map surface flatness of complex parts,” Laser Focus World95–98 (February1994).
  5. K. Okada, H. Sakuta, T. Ose, J. Tsujiuchi, “Separate measurements of surface shapes and refractive index inhomogeneity of an optical element using tunable-source phase shifting interferometry,” Appl. Opt. 29, 3280–3284 (1990).
    [CrossRef] [PubMed]
  6. C. Ai, J. C. Wyant, “Testing an optical window of a small wedge angle: effect of multiple reflections,” Appl. Opt. 32, 4904–4912 (1993).
    [CrossRef] [PubMed]
  7. J. Schwider, “White-light Fizeau interferometer,” Appl. Opt. 36, 1433–1437 (1997).
    [CrossRef] [PubMed]
  8. R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
    [CrossRef]
  9. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surface and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [CrossRef] [PubMed]
  10. P. de Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34, 4723–4730 (1995).
    [CrossRef]

1997 (1)

1995 (1)

1993 (1)

1992 (2)

1990 (1)

1987 (1)

1981 (1)

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

1974 (1)

Ai, C.

Barnes, P. A.

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

Brangaccio, D. J.

Bruning, J. H.

Chida, K.

Dandliker, R.

de Groot, P.

P. de Groot, “Derivation of algorithms for phase-shifting interferometry using the concept of a data-sampling window,” Appl. Opt. 34, 4723–4730 (1995).
[CrossRef]

P. de Groot, R. Smythe, L. Deck, “Laser diodes map surface flatness of complex parts,” Laser Focus World95–98 (February1994).

Deck, L.

P. de Groot, R. Smythe, L. Deck, “Laser diodes map surface flatness of complex parts,” Laser Focus World95–98 (February1994).

Duta, N. K.

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

Frosio, G.

Gallagher, J. E.

Herriott, D. R.

Hitzenberger, C.

Nelson, R. J.

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

Noda, J.

Okada, K.

Ose, T.

Rosenfeld, D. P.

Sakuta, H.

Schwider, J.

Smythe, R.

P. de Groot, R. Smythe, L. Deck, “Laser diodes map surface flatness of complex parts,” Laser Focus World95–98 (February1994).

Takada, K.

Tsujiuchi, J.

White, A. D.

Wilson, R. B.

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

Wright, P. D.

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

Wyant, J. C.

Yokohama, I.

Zimmermann, E.

Appl. Opt. (7)

IEEE J. Quantum Electron. (1)

R. J. Nelson, R. B. Wilson, P. D. Wright, P. A. Barnes, N. K. Duta, “Cw electro-optical properties of GaAsP (λ = 1.3 µm) buried-heterostructure lasers,” IEEE J. Quantum Electron. QE-17, 202–207 (1981).
[CrossRef]

Opt. Lett. (1)

Other (1)

P. de Groot, R. Smythe, L. Deck, “Laser diodes map surface flatness of complex parts,” Laser Focus World95–98 (February1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Coherence functions of a two-mode laser and a five-mode laser, respectively. Both lasers have the same FSR; the effective cavity lengths are the same.

Fig. 2
Fig. 2

Schematic diagram of a Fizeau phase-shift interferometer.

Fig. 3
Fig. 3

Interference fringe pattern obtained with the diode in (a) a single-mode operation and (b) a multimode operation. (a) A multibeam interference shows a fixed interference pattern, and (b) a two-beam interference has no fixed interference pattern.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

In=A+B cos2πOPD/λ+nπ/2,
OPD=λ/2π tan-12I4-2I2/I1-2I3+I5.
Inx, y=3+2 cos2πopdx, y/λ+nπ/2,
contrastx, y=Imax-Imin/Imax+Imin=2/3,

Metrics