Abstract

Design and operation of a compact, portable, room-temperature mid-infrared gas sensor is reported. The sensor is based on continuous-wave difference-frequency generation (DFG) in bulk periodically poled lithium niobate at 4.6 µm, pumped by a solitary GaAlAs diode laser at 865 nm and a diode-pumped monolithic ring Nd:YAG laser at 1064.5 nm. The instrument was used for detection of CO in air at atmospheric pressure with 1 ppb precision (parts in 109, by mole fraction) and 0.6% accuracy for a signal averaging time of 10 s. It employed a compact multipass absorption cell with a 18-m path length and a thermoelectrically cooled HgCdTe detector. Precision was limited by residual interference fringes arising from scattering in the multipass cell. This is the first demonstration of a portable high-precision gas sensor based on diode-pumped DFG at room temperature. The use of an external-cavity diode laser can provide a tuning range of 700 cm-1 and allow the detection of several trace gases, including N2O, CO2, SO2, H2CO, and CH4.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Canarelli, Z. Benko, R. F. Curl, F. K. Tittel, “Continuous-wave infrared laser spectrometer based on difference frequency generation in AgGaS2 for high-resolution spectroscopy,” J. Opt. Soc. Am. B 9, 197–202 (1992).
    [CrossRef]
  2. W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
    [CrossRef]
  3. U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
    [CrossRef]
  4. W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
    [CrossRef]
  5. B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
    [CrossRef]
  6. L. Goldberg, W. K. Burns, R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1282 (1995).
    [CrossRef] [PubMed]
  7. A. Balakrishnan, S. Sanders, S. DeMars, J. Webjörn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 µW of power at 4.3-µm wavelength,” Opt. Lett. 21, 952–954 (1996).
    [CrossRef] [PubMed]
  8. E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
    [CrossRef]
  9. M. A. Arbore, M.-H. Chous, M. M. Fejer, “Difference frequency mixing in LiNbO3 waveguides using an adiabatically tapered periodically-segmented coupling region,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 42.
  10. Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
    [CrossRef]
  11. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, J. Kendall, “Aircraft laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, and HNO3,” Appl. Opt. 33, 454–472 (1994).
    [CrossRef] [PubMed]
  12. M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
    [CrossRef]
  13. A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
    [CrossRef]
  14. Y.-H. Zhang, “Continuous wave operation of InAs/InAsxSb1-x midinfrared lasers,” Appl. Phys. Lett. 66, 118–120 (1995).
    [CrossRef]
  15. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Quasi-phase-matched 1.064-µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
    [CrossRef] [PubMed]
  16. G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  17. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
    [CrossRef] [PubMed]
  18. U. Simon, Z. Benko, M. W. Sigrist, R. F. Curl, F. K. Tittel, “Design considerations of an infrared spectrometer based on different-frequency generation in AgGaSe2,” Appl. Opt. 32, 6650–6655 (1993).
    [CrossRef] [PubMed]
  19. K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-µm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
    [CrossRef] [PubMed]
  20. K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
    [CrossRef]
  21. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  22. A. G. Maki, J. S. Wells, Wavenumber Calibration Tables From Heterodyne Frequency Measurements, Spec. Publ. 821, 1991, (Natl. Inst. Stand. Technol., Gaithersburg, Md.)
  23. T.-B. Chu, M. Broyer, “Intracavity CW difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46, 523–533 (1985).
    [CrossRef]
  24. L. E. Myers, E. L. Ginzton Laboratory, Stanford University, Stanford, Calif., 94305-4085 (personal communication, 1995).
  25. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University, Cambridge, England, 1989),572–580.
  26. F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
    [CrossRef]
  27. G. Guelachvili, K. N. Rao, Handbook of Infrared Spectroscopy (Academic, San Diego, Calif., 1986).
  28. M. Taya, M. Bashaw, M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
    [CrossRef] [PubMed]

1997

B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
[CrossRef]

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

1996

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
[CrossRef]

W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
[CrossRef]

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-µm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
[CrossRef] [PubMed]

M. Taya, M. Bashaw, M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
[CrossRef] [PubMed]

A. Balakrishnan, S. Sanders, S. DeMars, J. Webjörn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 µW of power at 4.3-µm wavelength,” Opt. Lett. 21, 952–954 (1996).
[CrossRef] [PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

1995

Y.-H. Zhang, “Continuous wave operation of InAs/InAsxSb1-x midinfrared lasers,” Appl. Phys. Lett. 66, 118–120 (1995).
[CrossRef]

M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Quasi-phase-matched 1.064-µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef] [PubMed]

L. Goldberg, W. K. Burns, R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1282 (1995).
[CrossRef] [PubMed]

1994

1993

1992

1991

E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

1990

Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
[CrossRef]

1987

1985

T.-B. Chu, M. Broyer, “Intracavity CW difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46, 523–533 (1985).
[CrossRef]

1984

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Alexander, J. I.

Arbore, M. A.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

M. A. Arbore, M.-H. Chous, M. M. Fejer, “Difference frequency mixing in LiNbO3 waveguides using an adiabatically tapered periodically-segmented coupling region,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 42.

Balakrishnan, A.

Barbe, A.

Bashaw, M.

Benko, Z.

Blanke, T.

W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
[CrossRef]

Bortz, M. L.

E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Bosenberg, W. R.

Bradley, C. C.

Brown, L. R.

Broyer, M.

T.-B. Chu, M. Broyer, “Intracavity CW difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46, 523–533 (1985).
[CrossRef]

Burns, W. K.

Byer, R. L.

Camy-Peyret, C.

Canarelli, P.

Chave, R. G.

Chous, M.-H.

M. A. Arbore, M.-H. Chous, M. M. Fejer, “Difference frequency mixing in LiNbO3 waveguides using an adiabatically tapered periodically-segmented coupling region,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 42.

Chu, T.-B.

T.-B. Chu, M. Broyer, “Intracavity CW difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46, 523–533 (1985).
[CrossRef]

Curl, R. F.

DeMars, S.

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

Drobshoff, A.

Eckardt, R. C.

Eckhoff, W. C.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
[CrossRef]

Edwards, G. J.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Feit, Z.

Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
[CrossRef]

Fejer, M. M.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

M. Taya, M. Bashaw, M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
[CrossRef] [PubMed]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Quasi-phase-matched 1.064-µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef] [PubMed]

E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

M. A. Arbore, M.-H. Chous, M. M. Fejer, “Difference frequency mixing in LiNbO3 waveguides using an adiabatically tapered periodically-segmented coupling region,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 42.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University, Cambridge, England, 1989),572–580.

Flaud, J.-M.

Gamache, R. R.

Goldberg, L.

Goldman, A.

Guelachvili, G.

G. Guelachvili, K. N. Rao, Handbook of Infrared Spectroscopy (Academic, San Diego, Calif., 1986).

Hertz, H. M.

E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Hollberg, L.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

Hulet, R. G.

Husson, N.

Inguscio, M.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Kebabian, P. L.

M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Kelz, T.

B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
[CrossRef]

Kendall, J.

Kostyk, D.

Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
[CrossRef]

Kronfeldt, H.-D.

B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
[CrossRef]

Lang, R. J.

Lawrence, M.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Lim, E. J.

E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Mak, P.

Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
[CrossRef]

Maki, A. G.

A. G. Maki, J. S. Wells, Wavenumber Calibration Tables From Heterodyne Frequency Measurements, Spec. Publ. 821, 1991, (Natl. Inst. Stand. Technol., Gaithersburg, Md.)

May, R. D.

McElhanon, R. W.

McManus, J. B.

M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Mehuys, D. G.

Miller, C. E.

Miller, G. D.

Mücke, R.

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

Myers, L. E.

Nagele, M.

B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
[CrossRef]

Nam, D. W.

Nelson, D. D.

M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Pavone, F. S.

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Petrov, K. P.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-µm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
[CrossRef] [PubMed]

Pickett, H. M.

Popov, A.

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

Poynter, R. L.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University, Cambridge, England, 1989),572–580.

Putnam, R. S.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
[CrossRef]

Rao, K. N.

G. Guelachvili, K. N. Rao, Handbook of Infrared Spectroscopy (Academic, San Diego, Calif., 1986).

Rempel, C.

W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
[CrossRef]

Rinsland, C. P.

Rothman, L. S.

Sanders, S.

Schade, W.

W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
[CrossRef]

Sherstnev, V.

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

Sigrist, M. W.

Simon, U.

Smith, M. A. H.

Sumpf, B.

B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
[CrossRef]

Taya, M.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University, Cambridge, England, 1989),572–580.

Tittel, F. K.

Toth, R. A.

Trimble, C. A.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University, Cambridge, England, 1989),572–580.

Waarts, R. G.

Waltman, S.

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

Wang, S.

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
[CrossRef]

Webjörn, J.

Webster, C. R.

Welch, D. F.

Wells, J. S.

A. G. Maki, J. S. Wells, Wavenumber Calibration Tables From Heterodyne Frequency Measurements, Spec. Publ. 821, 1991, (Natl. Inst. Stand. Technol., Gaithersburg, Md.)

Werle, P.

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

Willer, U.

W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
[CrossRef]

Woods, R. J.

Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
[CrossRef]

Yakovlev, Y.

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

Zahniser, M.

M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Zhang, Y.-H.

Y.-H. Zhang, “Continuous wave operation of InAs/InAsxSb1-x midinfrared lasers,” Appl. Phys. Lett. 66, 118–120 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. B

W. Schade, T. Blanke, U. Willer, C. Rempel, “Compact tunable mid-infrared laser source by difference frequency generation of two diode-lasers,” Appl. Phys. B 63, 99–102 (1996).
[CrossRef]

B. Sumpf, T. Kelz, M. Nagele, H.-D. Kronfeldt, “A cw AgGaS2 difference frequency spectrometer with diode lasers as pump sources,” Appl. Phys. B 64, 521–524 (1997).
[CrossRef]

W. C. Eckhoff, R. S. Putnam, S. Wang, R. F. Curl, F. K. Tittel, “A continuously tunable long-wavelength cw IR source for high-resolution spectroscopy and trace gas detection,” Appl. Phys. B 63, 437–441 (1996).
[CrossRef]

K. P. Petrov, S. Waltman, E. J. Dlugokencky, M. A. Arbore, M. M. Fejer, F. K. Tittel, L. Hollberg, “Precise measurement of methane in air using diode-pumped 3.4 µm difference-frequency generation in PPLN,” Appl. Phys. B 64, 567–572 (1997).
[CrossRef]

F. S. Pavone, M. Inguscio, “Frequency- and wavelength-modulation spectroscopies: comparison of experimental methods using an AlGaAs diode laser,” Appl. Phys. B 56, 118–122 (1993).
[CrossRef]

Appl. Phys. Lett.

E. J. Lim, H. M. Hertz, M. L. Bortz, M. M. Fejer, “Infrared radiation generated by quasi-phase-matched difference-frequency mixing in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 59, 2207–2209 (1991).
[CrossRef]

Z. Feit, D. Kostyk, R. J. Woods, P. Mak, “Molecular beam epitaxy grown PbEuSeTe buried-heterostructure lasers with continuous wave operation at 195 K,” Appl. Phys. Lett. 57, 2891–2893 (1990).
[CrossRef]

A. Popov, V. Sherstnev, Y. Yakovlev, R. Mücke, P. Werle, “High power InAsSb/InAsSbP double heterostructure laser for continuous wave operation at 3.6 µm,” Appl. Phys. Lett. 68, 2790–2792 (1996).
[CrossRef]

Y.-H. Zhang, “Continuous wave operation of InAs/InAsxSb1-x midinfrared lasers,” Appl. Phys. Lett. 66, 118–120 (1995).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.

T.-B. Chu, M. Broyer, “Intracavity CW difference frequency generation by mixing three photons and using Gaussian laser beams,” J. Phys. 46, 523–533 (1985).
[CrossRef]

Opt. Lett.

U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, F. K. Tittel, “Difference-frequency generation in AgGaS2 by use of single-mode diode-laser pump sources,” Opt. Lett. 18, 1062–1064 (1993).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Quasi-phase-matched 1.064-µm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef] [PubMed]

L. Goldberg, W. K. Burns, R. W. McElhanon, “Difference-frequency generation of tunable mid-infrared radiation in bulk periodically poled LiNbO3,” Opt. Lett. 20, 1280–1282 (1995).
[CrossRef] [PubMed]

K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, F. K. Tittel, “Detection of CO in air by diode-pumped 4.6-µm difference-frequency generation in quasi-phase-matched LiNbO3,” Opt. Lett. 21, 86–88 (1996).
[CrossRef] [PubMed]

M. Taya, M. Bashaw, M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996).
[CrossRef] [PubMed]

A. Balakrishnan, S. Sanders, S. DeMars, J. Webjörn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, D. F. Welch, “Broadly tunable laser-diode-based mid-infrared source with up to 31 µW of power at 4.3-µm wavelength,” Opt. Lett. 21, 952–954 (1996).
[CrossRef] [PubMed]

W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, R. L. Byer, “93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator,” Opt. Lett. 21, 1336–1338 (1996).
[CrossRef] [PubMed]

Opt. Quantum Electron.

G. J. Edwards, M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Philos. Trans. R. Soc. London Ser. A

M. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, “Measurements of trace gas fluxes using tunable diode laser spectroscopy,” Philos. Trans. R. Soc. London Ser. A 351, 371–382 (1995).
[CrossRef]

Other

M. A. Arbore, M.-H. Chous, M. M. Fejer, “Difference frequency mixing in LiNbO3 waveguides using an adiabatically tapered periodically-segmented coupling region,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 42.

A. G. Maki, J. S. Wells, Wavenumber Calibration Tables From Heterodyne Frequency Measurements, Spec. Publ. 821, 1991, (Natl. Inst. Stand. Technol., Gaithersburg, Md.)

L. E. Myers, E. L. Ginzton Laboratory, Stanford University, Stanford, Calif., 94305-4085 (personal communication, 1995).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in Pascal (Cambridge University, Cambridge, England, 1989),572–580.

G. Guelachvili, K. N. Rao, Handbook of Infrared Spectroscopy (Academic, San Diego, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the optical section of a portable sensor for trace gas detection, based on diode-pumped mid-infrared DFG in bulk PPLN. The size of the section is 65 cm × 31 cm × 15 cm. Here WP is a half-wave plate, APP is an anamorphic prism pair, S is a shutter, and BS is a beam splitter.

Fig. 2
Fig. 2

Diagram of the electronic section of the instrument. A logic signal from the laptop computer drives the shutter circuit (SC) to periodically block the Nd:YAG beam for measurements of dark detector voltage.

Fig. 3
Fig. 3

Photograph of the instrument with cover removed, showing the optical breadboard and the electronic components mounted below.

Fig. 4
Fig. 4

Infrared spectrum of N2O in the multipass cell at a pressure of 2.5 Pa. Table 1 lists the corresponding transition frequencies. The trace is a 512 sweep average, corrected for the amplitude modulation associated with frequency tuning. The inset shows magnified interference fringes due to scattering in the multipass cell, limiting the signal-to-noise ratio to 300.

Fig. 5
Fig. 5

Spectrum of the R(2) = 2154.595582 cm-1 (Ref. 22) fundamental transition of CO in room air at atmospheric pressure. The dots represent absorption signal averaged over 100 sweeps and corrected for the linear amplitude modulation associated with frequency tuning. The thick solid trace is a fit to a Lorentzian peak. Frequency axis is drawn relative to the fitted peak center a1. The frequency scale is based on the pressure-broadening coefficient of 0.068 cm-1 atm-1 (Ref. 21) and the fitted peak width a2.

Fig. 6
Fig. 6

Peak absorbance (a0) at the R(2) transition of CO versus time in the calibration experiment. The air from a high-pressure cylinder has a factory-assigned CO content of 9000 ± 50 ppb. The measured absorbance normalized to the CO concentration is (5.980 ± 0.006) × 10-5 ppb-1. This compares well with the number (5.95 ± 0.06) × 10-5 ppb-1 calculated from the hitran database.21 Error bars in the plot represent the root-mean-squared fit residuals, equivalent to 20 ppb CO.

Fig. 7
Fig. 7

Measurement of air sample with factory-assigned CO content of 1030 ± 55 ppb. The value measured in the experiment is 1055.9 ± 0.8 ppb, based on the calibration data from Figure 6. Error bars represent the root-mean-squared fit residuals, equivalent to 13 ppb CO.

Fig. 8
Fig. 8

CO concentration in room air versus time, recorded at Rice University on 5–6 December 1996. The multipass cell was left open to allow convective flow of air. The peaks were observed during the evening and morning rush hours.

Fig. 9
Fig. 9

The range of mid-infrared transitions for various atmospheric pollutants is shown. Data were taken from the hitran database.21

Tables (2)

Tables Icon

Table 1 Infrared Transitions Identified in Fig. 4

Tables Icon

Table 2 Gas Species Detectable with Diode-Pumped DFG in PPLNa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P3=16πω3deff2c2n1n2n3k1-1+k2-1 P1P2LhLb; k2k1T exp-αL,
hξ; μ=12ξ0ξdτ -ξξ×dτ1+ττ1+ττ2+τ-τ2·μ2-1μ2+12.
Pν=P0νexp-γνCL,
γν=γ01+ν-ν0/Δ2.
lnVx-Vdark=a01+x-a12/a22+lna3+a4x.
Fk=exp-k2/322, k=0,, 512.
c=γ0L=5.980±0.006+10-5 ppb-1.

Metrics