K. T. Kim, “The translation formula for vector multipole fields and the recurrence relations of the translation coefficients of scalar and vector multipole fields,” IEEE Trans. Antennas Propag. 44, 1482–1487 (1996).

[CrossRef]

Y.-l. Xu, “Calculation of the addition coefficients in electromagnetic multisphere-scattering theory,” J. Comput. Phys. 127, 285–298 (1996); erratum, J. Comput. Phys. 134, 200 (1997).

B. Å. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control,” J. Quant. Spectrosc. Radiat. Transfer 55, 663–672 (1996).

[CrossRef]

Y.-l. Xu, “Fast evaluation of the Gaunt coefficients,” Math. Comput. 65, 1601–1612 (1996).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[CrossRef]

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres. Part I: Multiple expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).

[CrossRef]

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

B. Friedman, J. Russek, “Addition theorems for spherical waves,” Q. Appl. Math. 12, 13–23 (1954).

J. A. Gaunt, “On the triplets of helium,” Philos. Trans. R. Soc. London Ser. A 228, 151–196 (1929).

[CrossRef]

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres. Part I: Multiple expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).

[CrossRef]

J. H. Bruning, “Multiple scattering by spheres,” Ph.D. dissertation (Department of Electrical Engineering, University of Illinois, Urbana, Ill., 1969).

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U. Press, Princeton, N.J., 1957), Chap. 3, p. 46.

B. Friedman, J. Russek, “Addition theorems for spherical waves,” Q. Appl. Math. 12, 13–23 (1954).

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. II: Clusters of arbitrary configurations,” Opt. Lett. 13, 1063–1065 (1988).

[CrossRef]
[PubMed]

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. I: Linear Chains,” Opt. Lett. 13, 90–92 (1988).

[CrossRef]

K. A. Fuller, G. W. Kattawar, R. T. Wang, “Electromagnetic scattering from two dielectric spheres: further comparisons between theory and experiment,” Appl. Opt. 25, 2521–2529 (1986).

[CrossRef]
[PubMed]

J. A. Gaunt, “On the triplets of helium,” Philos. Trans. R. Soc. London Ser. A 228, 151–196 (1929).

[CrossRef]

B. Å. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control,” J. Quant. Spectrosc. Radiat. Transfer 55, 663–672 (1996).

[CrossRef]

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. I: Linear Chains,” Opt. Lett. 13, 90–92 (1988).

[CrossRef]

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. II: Clusters of arbitrary configurations,” Opt. Lett. 13, 1063–1065 (1988).

[CrossRef]
[PubMed]

K. A. Fuller, G. W. Kattawar, R. T. Wang, “Electromagnetic scattering from two dielectric spheres: further comparisons between theory and experiment,” Appl. Opt. 25, 2521–2529 (1986).

[CrossRef]
[PubMed]

G. W. Kattawar, C. E. Dean, “Electromagnetic scattering from two dielectric spheres: comparison between theory and experiment,” Opt. Lett. 8, 48–51 (1983).

[CrossRef]
[PubMed]

K. T. Kim, “The translation formula for vector multipole fields and the recurrence relations of the translation coefficients of scalar and vector multipole fields,” IEEE Trans. Antennas Propag. 44, 1482–1487 (1996).

[CrossRef]

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres. Part I: Multiple expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[CrossRef]

B. Friedman, J. Russek, “Addition theorems for spherical waves,” Q. Appl. Math. 12, 13–23 (1954).

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

K. A. Fuller, G. W. Kattawar, R. T. Wang, “Electromagnetic scattering from two dielectric spheres: further comparisons between theory and experiment,” Appl. Opt. 25, 2521–2529 (1986).

[CrossRef]
[PubMed]

R. T. Wang, J. M. Greenberg, D. W. Schuerman, “Experimental results of dependent light scattering by two spheres,” Opt. Lett. 6, 543–545 (1981).

[CrossRef]
[PubMed]

R. T. Wang, “Extinction by dumbells and chains of spheres,” in Proceedings of the 1983 CRDC Scientific Conference on Obscuration and Aerosol Research, J. Farmer, R. H. Kohl, eds. (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Grounds, Md., 1984), pp. 237–247.

E. P. Wigner, “On the matrices which reduce the Krönecker products of representations of simply reducible groups,” in Quantum Theory of Angular Momentum, L. C. Biedenharn, H. van Dam, eds. (Academic, New York, 1965), pp. 89–132.

Y.-I. Xu, “Fast evaluation of Gaunt coefficients: recursive approach,” J. Comput. Appl. Math. (to be published).

Y.-l. Xu, “Fast evaluation of the Gaunt coefficients,” Math. Comput. 65, 1601–1612 (1996).

[CrossRef]

Y.-l. Xu, “Calculation of the addition coefficients in electromagnetic multisphere-scattering theory,” J. Comput. Phys. 127, 285–298 (1996); erratum, J. Comput. Phys. 134, 200 (1997).

Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).

[CrossRef]
[PubMed]

Y.-l. Xu, “Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories,” J. Comput. Phys. (to be published).

Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres: far field,” Appl. Opt. (to be published).

J. H. Bruning, Y. T. Lo, “Multiple scattering of EM waves by spheres. Part I: Multiple expansion and ray-optical solutions,” IEEE Trans. Antennas Propag. AP-19, 378–390 (1971).

[CrossRef]

K. T. Kim, “The translation formula for vector multipole fields and the recurrence relations of the translation coefficients of scalar and vector multipole fields,” IEEE Trans. Antennas Propag. 44, 1482–1487 (1996).

[CrossRef]

Y.-l. Xu, “Calculation of the addition coefficients in electromagnetic multisphere-scattering theory,” J. Comput. Phys. 127, 285–298 (1996); erratum, J. Comput. Phys. 134, 200 (1997).

B. Å. S. Gustafson, “Microwave analog to light scattering measurements: a modern implementation of a proven method to achieve precise control,” J. Quant. Spectrosc. Radiat. Transfer 55, 663–672 (1996).

[CrossRef]

Y.-l. Xu, “Fast evaluation of the Gaunt coefficients,” Math. Comput. 65, 1601–1612 (1996).

[CrossRef]

G. W. Kattawar, C. E. Dean, “Electromagnetic scattering from two dielectric spheres: comparison between theory and experiment,” Opt. Lett. 8, 48–51 (1983).

[CrossRef]
[PubMed]

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. I: Linear Chains,” Opt. Lett. 13, 90–92 (1988).

[CrossRef]

K. A. Fuller, G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. II: Clusters of arbitrary configurations,” Opt. Lett. 13, 1063–1065 (1988).

[CrossRef]
[PubMed]

R. T. Wang, J. M. Greenberg, D. W. Schuerman, “Experimental results of dependent light scattering by two spheres,” Opt. Lett. 6, 543–545 (1981).

[CrossRef]
[PubMed]

J. A. Gaunt, “On the triplets of helium,” Philos. Trans. R. Soc. London Ser. A 228, 151–196 (1929).

[CrossRef]

D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).

[CrossRef]

B. Friedman, J. Russek, “Addition theorems for spherical waves,” Q. Appl. Math. 12, 13–23 (1954).

S. Stein, “Addition theorems for spherical wave functions,” Q. Appl. Math. 19, 15–24 (1961).

O. R. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

J. H. Bruning, “Multiple scattering by spheres,” Ph.D. dissertation (Department of Electrical Engineering, University of Illinois, Urbana, Ill., 1969).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton U. Press, Princeton, N.J., 1957), Chap. 3, p. 46.

E. P. Wigner, “On the matrices which reduce the Krönecker products of representations of simply reducible groups,” in Quantum Theory of Angular Momentum, L. C. Biedenharn, H. van Dam, eds. (Academic, New York, 1965), pp. 89–132.

Y.-l. Xu, “Electromagnetic scattering by an aggregate of spheres: far field,” Appl. Opt. (to be published).

R. T. Wang, “Extinction by dumbells and chains of spheres,” in Proceedings of the 1983 CRDC Scientific Conference on Obscuration and Aerosol Research, J. Farmer, R. H. Kohl, eds. (U.S. Army Chemical Research, Development, and Engineering Center, Aberdeen Proving Grounds, Md., 1984), pp. 237–247.

Y.-l. Xu, “Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories,” J. Comput. Phys. (to be published).

Y.-I. Xu, “Fast evaluation of Gaunt coefficients: recursive approach,” J. Comput. Appl. Math. (to be published).