Abstract

Pulse shortening of the backscatter of a KrF excimer laser beam focused on the surface of n-hexane is reported. Simultaneous measurements of the backscattered beam, a Fresnel reflected beam, incoherent scattered photons from a liquid surface, and a transmitted beam are performed. The results show that the surface reflected beam disappears followed by beam expansion and the transmitted beam is reduced to form a filamentlike structure with the onset of backscatter. The pulse width of the backscattered beam shows a clear dependence on the focal position in the liquid. Incoherent scattering is sharply enhanced when the laser beam is focused at the liquid surface where the backscattered beam is especially short. The observed phenomena indicate that stimulated thermal scattering is the pulse shortening mechanism.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. L. Bourne, A. J. Alcock, “Subnanosecond-pulse generation at 308 and 450 nm by truncated stimulated Brillouin scattering,” Opt. Lett. 9, 411–413 (1984).
    [CrossRef] [PubMed]
  2. Y. S. Huo, A. J. Alcock, O. L. Bourne, “A time-resolved study of subnanosecond pulse generation by the combined effects of stimulated Brillouin scattering and laser-induced breakdown,” Appl. Phys. B 38, 125–129 (1985).
    [CrossRef]
  3. I. A. McIntyre, K. Boyer, C. K. Rhodes, “Shortening of KrF* laser pulses using stimulated Brillouin scattering,” Opt. Lett. 12, 909–911 (1989).
    [CrossRef]
  4. V. B. Karpov, V. V. Korobkin, D. A. Dolgolenko, “Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,” Sov. J. Quantum Electron. 21, 1235–1238 (1991).
    [CrossRef]
  5. S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
    [CrossRef]
  6. S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
    [CrossRef]

1993

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

1991

V. B. Karpov, V. V. Korobkin, D. A. Dolgolenko, “Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,” Sov. J. Quantum Electron. 21, 1235–1238 (1991).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

1989

1985

Y. S. Huo, A. J. Alcock, O. L. Bourne, “A time-resolved study of subnanosecond pulse generation by the combined effects of stimulated Brillouin scattering and laser-induced breakdown,” Appl. Phys. B 38, 125–129 (1985).
[CrossRef]

1984

Alcock, A. J.

Y. S. Huo, A. J. Alcock, O. L. Bourne, “A time-resolved study of subnanosecond pulse generation by the combined effects of stimulated Brillouin scattering and laser-induced breakdown,” Appl. Phys. B 38, 125–129 (1985).
[CrossRef]

O. L. Bourne, A. J. Alcock, “Subnanosecond-pulse generation at 308 and 450 nm by truncated stimulated Brillouin scattering,” Opt. Lett. 9, 411–413 (1984).
[CrossRef] [PubMed]

Alimpiev, S. S.

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

Bourne, O. L.

Y. S. Huo, A. J. Alcock, O. L. Bourne, “A time-resolved study of subnanosecond pulse generation by the combined effects of stimulated Brillouin scattering and laser-induced breakdown,” Appl. Phys. B 38, 125–129 (1985).
[CrossRef]

O. L. Bourne, A. J. Alcock, “Subnanosecond-pulse generation at 308 and 450 nm by truncated stimulated Brillouin scattering,” Opt. Lett. 9, 411–413 (1984).
[CrossRef] [PubMed]

Boyer, K.

Bukreev, V. S.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

Dolgolenko, D. A.

V. B. Karpov, V. V. Korobkin, D. A. Dolgolenko, “Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,” Sov. J. Quantum Electron. 21, 1235–1238 (1991).
[CrossRef]

Huo, Y. S.

Y. S. Huo, A. J. Alcock, O. L. Bourne, “A time-resolved study of subnanosecond pulse generation by the combined effects of stimulated Brillouin scattering and laser-induced breakdown,” Appl. Phys. B 38, 125–129 (1985).
[CrossRef]

Karpov, V. B.

V. B. Karpov, V. V. Korobkin, D. A. Dolgolenko, “Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,” Sov. J. Quantum Electron. 21, 1235–1238 (1991).
[CrossRef]

Korobkin, V. V.

V. B. Karpov, V. V. Korobkin, D. A. Dolgolenko, “Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,” Sov. J. Quantum Electron. 21, 1235–1238 (1991).
[CrossRef]

Kusakin, V. I.

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

Likhanskii, S. V.

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

McIntyre, I. A.

Obidin, A. Z.

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

Rhodes, C. K.

Vartapetov, S. K.

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

Veselovskii, I. A.

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

Appl. Phys. B

Y. S. Huo, A. J. Alcock, O. L. Bourne, “A time-resolved study of subnanosecond pulse generation by the combined effects of stimulated Brillouin scattering and laser-induced breakdown,” Appl. Phys. B 38, 125–129 (1985).
[CrossRef]

Opt. Lett.

Sov. J. Quantum Electron.

V. B. Karpov, V. V. Korobkin, D. A. Dolgolenko, “Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,” Sov. J. Quantum Electron. 21, 1235–1238 (1991).
[CrossRef]

S. S. Alimpiev, V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, V. I. Kusakin, S. V. Likhanskii, A. Z. Obidin, “Spectrum narrowing and phase conjugation of KrF excimer laser radiation,” Sov. J. Quantum Electron. 21, 80–81 (1991).
[CrossRef]

S. S. Alimpiev, S. K. Vartapetov, I. A. Veselovskii, S. V. Likhanskii, A. Z. Obidin, “Shortening the pulses of KrF and ArF lasers during near-surface breakdown in a liquid,” Sov. J. Quantum Electron. 23, 198–200 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental arrangement: L, excimer laser; A, aperture; G, Glan laser prism; P, λ/4 plate; S, streak camera; B, liquid cell; L1, focusing lens; L2, L5, L6, imaging lenses; L3, L4, collimating lenses.

Fig. 2
Fig. 2

Pulse shapes of I, pump; T, transmitted; and B, backscattered beams with focal positions of (a) 0 mm, (b) 1.4 mm, (c) 4.2 mm, (d) -1 mm.

Fig. 3
Fig. 3

Pulse width of the BSB with pump pulse energies of ●, 1.25 mJ; x, 0.25 mJ; ○, 0.05 mJ.

Fig. 4
Fig. 4

Simultaneous measurement of (a) the pump and reflected beams when the focal point is at -0.2 mm, and the BSB and reflected beam when the 0.12-mJ pump pulse energy is focused at (b) 0 mm, (c) 0.28 mm, (d) 0.42 mm.

Fig. 5
Fig. 5

Simultaneous measurement of the pump and reflected beams with 0-mm focal point when the pump pulse energy is (a) 0.042 mJ and (b) 0.018 mJ.

Fig. 6
Fig. 6

Simultaneous measurement of the BSB and transmitted beam when the 0.12-mJ pump pulse energy is focused at (a) 0 mm, (b) 0.28 mm, (c) 0.56 mm, (d) -0.1 mm.

Fig. 7
Fig. 7

Fraction of incoherent scattered energy over the pump beam with pump beam energies of ○, 0.12 mJ, □, 1.3 mJ.

Fig. 8
Fig. 8

Simultaneous measurement of pump, BSB, and incoherent scattered photons with 0.12-mJ pump pulse energy. The BSB is (a) short and (b) long.

Fig. 9
Fig. 9

(a) Temporal traces of the pump, BSB, and incoherent scattered photons when the 0.12-mJ pump beam is focused at 0 mm. The BSB and scattered photons with 1.3-mJ pump energy focused at (b) 0 mm, (c) 0.28 mm, (d) 0.56 mm, (e) -0.2 mm.

Fig. 10
Fig. 10

Onset of the BSB and incoherent scattering with respect to the pump pulse focused at various points: ●, BSB; ■, incoherent scattering with 0.12-mJ pump energy; ○, BSB; □, incoherent scattering with 1.3-mJ pump energy.

Metrics