Abstract

Rate constants for total and state-specific rotational energy transfer (RET) of OH A 2Σ+ (v′ = 2) have been measured directly in atmospheric methane–air and methane–oxygen flames for the first time to our knowledge. We used a picosecond Raman-excimer laser (τl = 300 ps, λ = 268 nm) to excite the P11(12.5) and Q11(16.5) AX transitions in the (2, 0) band of OH molecules. We analyzed the resultant fluorescence with a high-resolution spectrometer in combination with a fast-gated, intensified CCD camera (τg = 400 ps). We recorded the temporal evolution of the emission spectrum by shifting the detection time with respect to the laser pulse. Measured emission spectra were inverted to yield the time-dependent population of rotational levels in the excited state. We calculated rate constants for RET from the results of the fit. The total RET in v′ = 2 is similar to v′ = 0, 1. The state-specific rates are represented well by a simple energy-gap law.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse–Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  2. E. W. Rothe, P. Andresen, “A review of the application of tunable excimer lasers to combustion diagnostics,” Appl. Opt. 36, 3971–4033 (1997).
    [CrossRef] [PubMed]
  3. E. W. Rothe, Y. W. Gu, G. P. Reck, “Laser-induced predissociative fluorescence: dynamics and polarization and the effect of lower-state rotational energy transfer on quantitative diagnostics,” Appl. Opt. 35, 934–947 (1996).
    [CrossRef] [PubMed]
  4. A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
    [CrossRef]
  5. M. Köllner, P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499–503 (1995).
    [CrossRef]
  6. F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
    [CrossRef]
  7. F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
    [CrossRef]
  8. R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
    [CrossRef]
  9. M. D. Burrows, F. Bormann, P. Andresen, “Tunable, sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995).
    [CrossRef]
  10. P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).
  11. T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
    [CrossRef]
  12. J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program,” (SRI International, Menlo Park, Calif., 1996).
  13. G. H. Golub, V. Pereyra, “Nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal. 10, 413–432 (1973).
    [CrossRef]
  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1986).
  15. C. H. Greene, R. N. Zare, “Determination of product population and alignment using laser-induced fluorescence,” J. Chem. Phys. 78, 6741–6753 (1983).
    [CrossRef]
  16. P. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, New York, 1961).
  17. W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
    [CrossRef]
  18. P. M. Doherty, D. R. Crosley, “Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,” Appl. Opt. 23, 713–721 (1984).
    [CrossRef] [PubMed]
  19. M. H. Alexander, J. E. Smedley, G. C. Corey, “On the physical origin of propensity rules in collisions involving molecules in 2Σ electronic states,” J. Chem. Phys. 84, 3049–3058 (1986).
    [CrossRef]
  20. A. Jörg, U. Meier, K. Kohse–Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
    [CrossRef]
  21. R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational energy transfer and quenching of OH (A2Σ+, v′ = 1),” J. Phys. Chem. 92, 5710–5715 (1988).
    [CrossRef]
  22. I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Quenching of A2Σ+ OH at 300 K by several colliders,” J. Chem. Phys. 92, 5218–5222 (1990).
    [CrossRef]
  23. C. B. Cleveland, J. R. Wiesenfeld, “Electronic quenching of highly rotationally excited OH (A2Σ+, v′ = 0, 1) by H2O,” Chem. Phys. Lett. 144, 479–485 (1988).
    [CrossRef]
  24. R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+ (v′ = 1) by collisions with H2O in a low-pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
    [CrossRef]
  25. J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
    [CrossRef]
  26. T. Hartlieb, D. Markus, W. Kreutner, K. Kohse–Höinghaus, “Measurement of vibrational energy transfer of OH A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
    [CrossRef]
  27. A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
    [CrossRef]
  28. R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).
  29. mathcad 6.0 PLUS, MathSoft, Inc., 101 Main Street, Cambridge, Mass. 02142, 1995.
  30. S. Gordon, B. McBride, NASA Spec. Publ. SP-273 (NASA, Washington, D.C., 1971).
  31. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+ (v = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
    [CrossRef]
  32. R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH: I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
    [CrossRef]
  33. J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
    [CrossRef]
  34. A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
    [CrossRef]
  35. D. Stepowski, M. J. Cottereau, “Time resolved study of rotational energy transfer in A2Σ+ (v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
    [CrossRef]

1997 (3)

1996 (6)

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

E. W. Rothe, Y. W. Gu, G. P. Reck, “Laser-induced predissociative fluorescence: dynamics and polarization and the effect of lower-state rotational energy transfer on quantitative diagnostics,” Appl. Opt. 35, 934–947 (1996).
[CrossRef] [PubMed]

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
[CrossRef]

1995 (2)

M. Köllner, P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499–503 (1995).
[CrossRef]

M. D. Burrows, F. Bormann, P. Andresen, “Tunable, sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995).
[CrossRef]

1994 (1)

K. Kohse–Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

1993 (1)

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

1992 (1)

A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

1991 (1)

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+ (v′ = 1) by collisions with H2O in a low-pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

1990 (2)

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Quenching of A2Σ+ OH at 300 K by several colliders,” J. Chem. Phys. 92, 5218–5222 (1990).
[CrossRef]

A. Jörg, U. Meier, K. Kohse–Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

1988 (5)

R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational energy transfer and quenching of OH (A2Σ+, v′ = 1),” J. Phys. Chem. 92, 5710–5715 (1988).
[CrossRef]

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

C. B. Cleveland, J. R. Wiesenfeld, “Electronic quenching of highly rotationally excited OH (A2Σ+, v′ = 0, 1) by H2O,” Chem. Phys. Lett. 144, 479–485 (1988).
[CrossRef]

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
[CrossRef]

1986 (2)

M. H. Alexander, J. E. Smedley, G. C. Corey, “On the physical origin of propensity rules in collisions involving molecules in 2Σ electronic states,” J. Chem. Phys. 84, 3049–3058 (1986).
[CrossRef]

R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-resolved fluorescence investigation of rotational transfer in A2Σ+ (v = 0) OH,” Appl. Opt. 25, 4086–4095 (1986).
[CrossRef]

1984 (1)

1983 (1)

C. H. Greene, R. N. Zare, “Determination of product population and alignment using laser-induced fluorescence,” J. Chem. Phys. 78, 6741–6753 (1983).
[CrossRef]

1981 (1)

D. Stepowski, M. J. Cottereau, “Time resolved study of rotational energy transfer in A2Σ+ (v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

1979 (1)

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

1977 (1)

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH: I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

1973 (1)

G. H. Golub, V. Pereyra, “Nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal. 10, 413–432 (1973).
[CrossRef]

Alexander, M. H.

M. H. Alexander, J. E. Smedley, G. C. Corey, “On the physical origin of propensity rules in collisions involving molecules in 2Σ electronic states,” J. Chem. Phys. 84, 3049–3058 (1986).
[CrossRef]

Andresen, P.

E. W. Rothe, P. Andresen, “A review of the application of tunable excimer lasers to combustion diagnostics,” Appl. Opt. 36, 3971–4033 (1997).
[CrossRef] [PubMed]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

M. D. Burrows, F. Bormann, P. Andresen, “Tunable, sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995).
[CrossRef]

Augustin, S. D.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Bormann, F.

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

M. D. Burrows, F. Bormann, P. Andresen, “Tunable, sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995).
[CrossRef]

Burris, J.

J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
[CrossRef]

Burrows, M. D.

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

M. D. Burrows, F. Bormann, P. Andresen, “Tunable, sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995).
[CrossRef]

Butler, J. J.

J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
[CrossRef]

Campbell, E. M.

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

Cattolica, R. J.

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+ (v′ = 1) by collisions with H2O in a low-pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

Cleveland, C. B.

C. B. Cleveland, J. R. Wiesenfeld, “Electronic quenching of highly rotationally excited OH (A2Σ+, v′ = 0, 1) by H2O,” Chem. Phys. Lett. 144, 479–485 (1988).
[CrossRef]

Copeland, R. A.

R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational energy transfer and quenching of OH (A2Σ+, v′ = 1),” J. Phys. Chem. 92, 5710–5715 (1988).
[CrossRef]

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Corey, G. C.

M. H. Alexander, J. E. Smedley, G. C. Corey, “On the physical origin of propensity rules in collisions involving molecules in 2Σ electronic states,” J. Chem. Phys. 84, 3049–3058 (1986).
[CrossRef]

Cottereau, M. J.

D. Stepowski, M. J. Cottereau, “Time resolved study of rotational energy transfer in A2Σ+ (v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

Crosley, D. R.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Quenching of A2Σ+ OH at 300 K by several colliders,” J. Chem. Phys. 92, 5218–5222 (1990).
[CrossRef]

R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational energy transfer and quenching of OH (A2Σ+, v′ = 1),” J. Phys. Chem. 92, 5710–5715 (1988).
[CrossRef]

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

P. M. Doherty, D. R. Crosley, “Polarization of laser-induced fluorescence in OH in an atmospheric pressure flame,” Appl. Opt. 23, 713–721 (1984).
[CrossRef] [PubMed]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH: I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program,” (SRI International, Menlo Park, Calif., 1996).

DePristo, A. E.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Doherty, P. M.

Dreizler, A.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Feofilov, P. P.

P. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, New York, 1961).

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1986).

Golub, G. H.

G. H. Golub, V. Pereyra, “Nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal. 10, 413–432 (1973).
[CrossRef]

Gordon, S.

S. Gordon, B. McBride, NASA Spec. Publ. SP-273 (NASA, Washington, D.C., 1971).

Greene, C. H.

C. H. Greene, R. N. Zare, “Determination of product population and alignment using laser-induced fluorescence,” J. Chem. Phys. 78, 6741–6753 (1983).
[CrossRef]

Gu, Y. W.

Hares, J. D.

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

Hartlieb, T.

T. Hartlieb, D. Markus, W. Kreutner, K. Kohse–Höinghaus, “Measurement of vibrational energy transfer of OH A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

Heaps, W. S.

J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
[CrossRef]

Jeffries, J. B.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Quenching of A2Σ+ OH at 300 K by several colliders,” J. Chem. Phys. 92, 5218–5222 (1990).
[CrossRef]

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Joerg, A.

A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

Jörg, A.

A. Jörg, U. Meier, K. Kohse–Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Kienle, R.

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

Kilkenny, J. D.

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

Knaack, A.

W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
[CrossRef]

Kohse–Höinghaus, K.

T. Hartlieb, D. Markus, W. Kreutner, K. Kohse–Höinghaus, “Measurement of vibrational energy transfer of OH A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

K. Kohse–Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

A. Jörg, U. Meier, K. Kohse–Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Köllner, M.

M. Köllner, P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499–503 (1995).
[CrossRef]

Kreutner, W.

T. Hartlieb, D. Markus, W. Kreutner, K. Kohse–Höinghaus, “Measurement of vibrational energy transfer of OH A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

Laurendeau, N. M.

Lee, M. P.

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

Lengel, R. K.

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH: I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

Lucht, R. P.

Luque, J.

J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program,” (SRI International, Menlo Park, Calif., 1996).

Markus, D.

T. Hartlieb, D. Markus, W. Kreutner, K. Kohse–Höinghaus, “Measurement of vibrational energy transfer of OH A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

Mataga, T. G.

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+ (v′ = 1) by collisions with H2O in a low-pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

McBride, B.

S. Gordon, B. McBride, NASA Spec. Publ. SP-273 (NASA, Washington, D.C., 1971).

McGree, T. J.

J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
[CrossRef]

Meier, U.

A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

A. Jörg, U. Meier, K. Kohse–Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

Monkhouse, P.

M. Köllner, P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499–503 (1995).
[CrossRef]

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Nielsen, T.

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Picosecond planar laser-induced fluorescence measurements of OH A2Σ+ (v′ = 2) lifetime and energy transfer in atmospheric pressure flames,” Appl. Opt. 36, 6129–6140 (1997).
[CrossRef]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

Offt, A.

W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
[CrossRef]

Pereyra, V.

G. H. Golub, V. Pereyra, “Nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal. 10, 413–432 (1973).
[CrossRef]

Phillion, D. W.

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1986).

Rabitz, H.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Ramaswamy, R.

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

Reck, G. P.

Rothe, E. W.

Schade, W.

W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
[CrossRef]

Smedley, J. E.

M. H. Alexander, J. E. Smedley, G. C. Corey, “On the physical origin of propensity rules in collisions involving molecules in 2Σ electronic states,” J. Chem. Phys. 84, 3049–3058 (1986).
[CrossRef]

Smith, G. P.

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

Spiecker, H.

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

Stepowski, D.

D. Stepowski, M. J. Cottereau, “Time resolved study of rotational energy transfer in A2Σ+ (v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

Sweeney, D. W.

Tadday, R.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1986).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1986).

Walewski, J.

W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
[CrossRef]

Wiesenfeld, J. R.

C. B. Cleveland, J. R. Wiesenfeld, “Electronic quenching of highly rotationally excited OH (A2Σ+, v′ = 0, 1) by H2O,” Chem. Phys. Lett. 144, 479–485 (1988).
[CrossRef]

Wise, M. L.

R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational energy transfer and quenching of OH (A2Σ+, v′ = 1),” J. Phys. Chem. 92, 5710–5715 (1988).
[CrossRef]

Wolbeck, S.

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

Wolfrum, J.

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

Wysong, I. J.

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Quenching of A2Σ+ OH at 300 K by several colliders,” J. Chem. Phys. 92, 5218–5222 (1990).
[CrossRef]

Young, P. E.

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

Zare, R. N.

C. H. Greene, R. N. Zare, “Determination of product population and alignment using laser-induced fluorescence,” J. Chem. Phys. 78, 6741–6753 (1983).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (8)

A. Joerg, U. Meier, R. Kienle, K. Kohse–Höinghaus, “State-specific rotational energy transfer in OH (A2Σ+, v′ = 0) by some combustion-relevant collision partners,” Appl. Phys. B 55, 305–310 (1992).
[CrossRef]

T. Hartlieb, D. Markus, W. Kreutner, K. Kohse–Höinghaus, “Measurement of vibrational energy transfer of OH A2Σ+, v′ = 1 → 0) in low-pressure flames,” Appl. Phys. B 65, 81–91 (1997).
[CrossRef]

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A scaling formalism for the representation of rotational energy transfer in OH (A2Σ+) in combustion experiments,” Appl. Phys. B 63, 403–418 (1996).

R. Kienle, M. P. Lee, K. Kohse–Höinghaus, “A detailed rate equation model for the simulation of energy transfer in OH laser-induced fluorescence,” Appl. Phys. B 62, 583–599 (1996).
[CrossRef]

M. D. Burrows, F. Bormann, P. Andresen, “Tunable, sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995).
[CrossRef]

A. Dreizler, R. Tadday, P. Monkhouse, J. Wolfrum, “Time and spatially resolved LIF of OH A2Σ+ (v′ = 1) in atmospheric-pressure flames using picosecond excitation,” Appl. Phys. B 57, 85–87 (1993).
[CrossRef]

M. Köllner, P. Monkhouse, “Time-resolved LIF of OH in the flame front of premixed and diffusion flames at atmospheric pressure,” Appl. Phys. B 61, 499–503 (1995).
[CrossRef]

F. Bormann, T. Nielsen, M. D. Burrows, P. Andresen, “Single-pulse collision insensitive picosecond planar laser-induced fluorescence of OH A2Σ+ (v′ = 2) in atmospheric-pressure flames,” Appl. Phys. B 62, 601–607 (1996).
[CrossRef]

Chem. Phys. (1)

J. Burris, J. J. Butler, T. J. McGree, W. S. Heaps, “Collisional deactivation rates for A2Σ+ (v′ = 1) state of OH,” Chem. Phys. 124, 251–258 (1988).
[CrossRef]

Chem. Phys. Lett. (3)

C. B. Cleveland, J. R. Wiesenfeld, “Electronic quenching of highly rotationally excited OH (A2Σ+, v′ = 0, 1) by H2O,” Chem. Phys. Lett. 144, 479–485 (1988).
[CrossRef]

R. J. Cattolica, T. G. Mataga, “Rotational-level-dependent quenching of OH A2Σ+ (v′ = 1) by collisions with H2O in a low-pressure flame,” Chem. Phys. Lett. 182, 623–631 (1991).
[CrossRef]

J. B. Jeffries, K. Kohse–Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-level-dependent quenching of OH A2Σ+ at flame temperatures,” Chem. Phys. Lett. 152, 160–166 (1988).
[CrossRef]

J. Chem. Phys. (7)

A. E. DePristo, S. D. Augustin, R. Ramaswamy, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979).
[CrossRef]

I. J. Wysong, J. B. Jeffries, D. R. Crosley, “Quenching of A2Σ+ OH at 300 K by several colliders,” J. Chem. Phys. 92, 5218–5222 (1990).
[CrossRef]

R. K. Lengel, D. R. Crosley, “Energy transfer in A2Σ+ OH: I. Rotational,” J. Chem. Phys. 67, 2085–2101 (1977).
[CrossRef]

D. Stepowski, M. J. Cottereau, “Time resolved study of rotational energy transfer in A2Σ+ (v′ = 0) state of OH in a flame by laser induced fluorescence,” J. Chem. Phys. 74, 6674–6679 (1981).
[CrossRef]

M. H. Alexander, J. E. Smedley, G. C. Corey, “On the physical origin of propensity rules in collisions involving molecules in 2Σ electronic states,” J. Chem. Phys. 84, 3049–3058 (1986).
[CrossRef]

A. Jörg, U. Meier, K. Kohse–Höinghaus, “Rotational energy transfer in OH (A2Σ+, v′ = 0): a method for the direct determination of state-to-state transfer coefficients,” J. Chem. Phys. 93, 6453–6462 (1990).
[CrossRef]

C. H. Greene, R. N. Zare, “Determination of product population and alignment using laser-induced fluorescence,” J. Chem. Phys. 78, 6741–6753 (1983).
[CrossRef]

J. Phys. Chem. (1)

R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational energy transfer and quenching of OH (A2Σ+, v′ = 1),” J. Phys. Chem. 92, 5710–5715 (1988).
[CrossRef]

Phys. Rev. A (1)

W. Schade, J. Walewski, A. Offt, A. Knaack, “Picosecond laser probing of rotational alignment of NO in CO2,” Phys. Rev. A 53, R2921–R2924 (1996).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohse–Höinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Rev. Sci. Instrum. (2)

P. E. Young, J. D. Hares, J. D. Kilkenny, D. W. Phillion, E. M. Campbell, “Four-frame gated optical imager with 120-ps resolution,” Rev. Sci. Instrum. 59, 1457–1460 (1988).

T. Nielsen, F. Bormann, S. Wolbeck, H. Spiecker, M. D. Burrows, P. Andresen, “Time-of-flight analysis of light pulses with a temporal resolution of 100 ps,” Rev. Sci. Instrum. 67, 1721–1724 (1996).
[CrossRef]

SIAM J. Numer. Anal. (1)

G. H. Golub, V. Pereyra, “Nonlinear least squares problems whose variables separate,” SIAM J. Numer. Anal. 10, 413–432 (1973).
[CrossRef]

Other (5)

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. Press, Cambridge, U.K., 1986).

P. P. Feofilov, The Physical Basis of Polarized Emission (Consultants Bureau, New York, 1961).

J. Luque, D. R. Crosley, “lifbase: database and spectral simulation program,” (SRI International, Menlo Park, Calif., 1996).

mathcad 6.0 PLUS, MathSoft, Inc., 101 Main Street, Cambridge, Mass. 02142, 1995.

S. Gordon, B. McBride, NASA Spec. Publ. SP-273 (NASA, Washington, D.C., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Typical emission spectra from the (2, 1) band of OH after excitation of the P11(12.5) transition: (a) early spectrum with little RET and (b) the structure of the emission changed by RET 2 ns later.

Fig. 3
Fig. 3

Spectra recorded after Q11(16.5) excitation with vertical and horizontal polarization of the laser: (a) strong alignment is visible for early spectra; (b) levels populated by RET also show alignment.

Fig. 4
Fig. 4

Population of individual rotational levels of OH in v′ = 2 for different times. The populations were calculated from corrected emission spectra recorded in a stoichiometric methane-oxygen flame.

Fig. 5
Fig. 5

Time-dependent population of the laser-excited level (nl) and other levels in v′ = 2 (nbath) for the methane–oxygen flame.

Fig. 6
Fig. 6

Comparison of calculated and observed populations of rotational levels in the methane–oxygen flame for three different times.

Fig. 7
Fig. 7

Population of the excited state calculated for different ways of averaging (cases a and b). Different values of pulse energy change the magnitude of the nonlinear term in Eq. (A1).

Tables (3)

Tables Icon

Table 1 Values of α and R0 for the RET Matrixa

Tables Icon

Table 2 Cross Sections for Total RET of OH A 2Σ+ in Collisions with Water

Tables Icon

Table 3 Calculated RET Rates for Different Ways of Averaging

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Iλ=i=all linesnNi, FiAifλ-λ0i.
c=Iv/IhmeasIv/Ihcalc.
dn/dt=+V+Q+P+A+γtn,
x,x=l,l=-1, x,l=l,x=1.
γt=gvBx,lIt,
j,i=2Jj+1exp-EjkBTR0×exp-αEj-Ei ij,
i,i=-ki k,i.
σ=Rl,lvnξ=130±15 Å2, n=pkT,
v=8kTπμ1/2, μ=mH2O·mOHmH2O+mOH,
dndt=γt+0000-Q-RRb0R-Qb-Rbnxnlnbath.

Metrics