Abstract

The beam attenuation coefficient is an optical parameter that sensitively depends on suspended and dissolved substances in water. Its measurement is not only of interest for an understanding of the radiative transfer in a water column. With appropriate algorithms for data interpretation, it also allows a fast determination of absorbing and scattering matter as time-series measurements or depth profiles that cannot easily be obtained with other methods. An instrument has been developed for measuring spectral attenuation coefficients over a wavelength range from 340 to 785 nm. The optical path length can be set between 0 and 400 mm. This allows application in a wide range of turbidity in coastal and inland (case 2 and case 3) waters and a calibration of the instrument during in-situ measurements. This makes the instrument suitable for long-term applications in which signals from conventional instruments would degrade owing to the biofouling of optical windows. From the data, the amount and the size distribution of suspended particles and the specific absorption of dissolved organic matter are derived in real time. Algorithms based on Monte Carlo methods are available for a classification of transparent particles and phytoplankton.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).
  2. Where possible, the notation follows recommendations given in A. Morel, R. C. Smith, “Terminology and units in optical oceanography,” Mar. Geod. 5, 335–349 (1982).
  3. R. W. Austin, T. J. Petzold, “Considerations in the design and evaluation of oceanic transmissometers,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, PA., 1977), pp. 104–120, 384.
  4. R. W. Austin, “Precision considerations in the measurement of volume attenuation coefficient,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 121–124.
  5. G. Krause, K. Ohm, “A method to measure suspended load transports in estuaries,” Estuar. Coast. Shelf Sci. 19, 611–618 (1984).
    [CrossRef]
  6. J. C. Kitchen, J. R. V. Zaneveld, H. Pak, “Effect of particle size distribution and chlorophyll content on beam attenuation spectra,” Appl. Opt. 21, 3913–3918 (1982).
    [CrossRef] [PubMed]
  7. P. Diehl, H. Haardt, “Measurement of the spectral attenuation to support biological research in a ‘plankton tube’ experiment,” Oceanol. Acta 3, 89–96 (1982).
  8. R. W. Spinrad, “Use of specific beam attenuation coefficient for identification of suspended particulate material,” in Ocean Optics VIII, M. A. Blizard, ed., Proc. SPIE637, 135–140, (1986).
    [CrossRef]
  9. B. Lundgren, “Spectral transmittance measurements in the Baltic,” , (Copenhagen University, Institute of Physical Oceanography, Copenhagen, Denmark, 1976).
  10. H. Haardt, P. Diehl, B. Knoppers, “Messungen des spektralen Attenuations-koeffizienten an Latexsuspensionen, Phytoplanktonkulturen und natürlichen Wasserproben aus der Ostsee,” (Kiel University, Kiel, Germany, 1979).
  11. M. J. Borgerdon, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 373–385, (1990).
    [CrossRef]
  12. A. Morel, “Optics of marine particles and marine optics,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer–Verlag, Berlin, 1991), pp. 141–188.
    [CrossRef]
  13. A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats experimentaux et approche théorique,” in Optics of the Sea (Interface and In-Water Transmission and Imaging), AGARD Lec. Ser.61, 3.1.1–3.1.76, (1973). Reprinted in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 65–97.
  14. R. Reuter, “Characterization of marine particle suspensions by light scattering. II. Experimental results,” Oceanol. Acta 3, 325–332 (1980).
  15. F. H. Farmer, O. Jarrett, C. A. Brown, “Visible absorbance spectra: a basis for in situ and passive remote sensing of phytoplankton concentration and community composition,” NASA Tech. Paper 2094 (NASA, Langley Research Center, Hampton, Va., 1983).
  16. W. V. Smekot-Wensierski, B. Wozniak, H. Grassl, R. Doerffer, “Die Absorptionseigenschaften des marinen Phytoplanktons,” (GKSS Research Centre Geesthacht, Germany, 1992).
  17. A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
    [CrossRef]
  18. A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
    [CrossRef]
  19. H. Haardt, H. Maske, “Variability of excitation, emission, and absorption spectra normalized to the chlorophyll concentration,” in The Use of Chlorophyll Fluorescence Measurements from Space for Separating Constituents of Sea Water, study carried out by order of the European Space Agency, ESA contract RFQ 3-5059/84/NL/MD (GKSS Research Centre Geesthacht, Geesthacht, Germany, 1986), Vol. 2, Appendix 16.
  20. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  21. G. Mie, “Beiträage zur Optik trüber Medien, speziell kolloidaler Metalllösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
    [CrossRef]
  22. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  23. Y. H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res. 39, 1835–1855 (1992).
    [CrossRef]
  24. R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adratic Sea,” Int. J. Remote Sens. 14, 823–848 (1993).
    [CrossRef]
  25. G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

1993

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adratic Sea,” Int. J. Remote Sens. 14, 823–848 (1993).
[CrossRef]

1992

Y. H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res. 39, 1835–1855 (1992).
[CrossRef]

1984

G. Krause, K. Ohm, “A method to measure suspended load transports in estuaries,” Estuar. Coast. Shelf Sci. 19, 611–618 (1984).
[CrossRef]

1983

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

1982

P. Diehl, H. Haardt, “Measurement of the spectral attenuation to support biological research in a ‘plankton tube’ experiment,” Oceanol. Acta 3, 89–96 (1982).

J. C. Kitchen, J. R. V. Zaneveld, H. Pak, “Effect of particle size distribution and chlorophyll content on beam attenuation spectra,” Appl. Opt. 21, 3913–3918 (1982).
[CrossRef] [PubMed]

Where possible, the notation follows recommendations given in A. Morel, R. C. Smith, “Terminology and units in optical oceanography,” Mar. Geod. 5, 335–349 (1982).

1981

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

1980

R. Reuter, “Characterization of marine particle suspensions by light scattering. II. Experimental results,” Oceanol. Acta 3, 325–332 (1980).

1908

G. Mie, “Beiträage zur Optik trüber Medien, speziell kolloidaler Metalllösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Ahn, Y. H.

Y. H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res. 39, 1835–1855 (1992).
[CrossRef]

Austin, R. W.

R. W. Austin, “Precision considerations in the measurement of volume attenuation coefficient,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 121–124.

R. W. Austin, T. J. Petzold, “Considerations in the design and evaluation of oceanic transmissometers,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, PA., 1977), pp. 104–120, 384.

Bartz, R.

M. J. Borgerdon, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 373–385, (1990).
[CrossRef]

Borgerdon, M. J.

M. J. Borgerdon, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 373–385, (1990).
[CrossRef]

Bricaud, A.

Y. H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

Brown, C. A.

F. H. Farmer, O. Jarrett, C. A. Brown, “Visible absorbance spectra: a basis for in situ and passive remote sensing of phytoplankton concentration and community composition,” NASA Tech. Paper 2094 (NASA, Langley Research Center, Hampton, Va., 1983).

Budeus, G.

G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

Diebel, D.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adratic Sea,” Int. J. Remote Sens. 14, 823–848 (1993).
[CrossRef]

Diehl, P.

P. Diehl, H. Haardt, “Measurement of the spectral attenuation to support biological research in a ‘plankton tube’ experiment,” Oceanol. Acta 3, 89–96 (1982).

H. Haardt, P. Diehl, B. Knoppers, “Messungen des spektralen Attenuations-koeffizienten an Latexsuspensionen, Phytoplanktonkulturen und natürlichen Wasserproben aus der Ostsee,” (Kiel University, Kiel, Germany, 1979).

Doerffer, R.

W. V. Smekot-Wensierski, B. Wozniak, H. Grassl, R. Doerffer, “Die Absorptionseigenschaften des marinen Phytoplanktons,” (GKSS Research Centre Geesthacht, Germany, 1992).

Farmer, F. H.

F. H. Farmer, O. Jarrett, C. A. Brown, “Visible absorbance spectra: a basis for in situ and passive remote sensing of phytoplankton concentration and community composition,” NASA Tech. Paper 2094 (NASA, Langley Research Center, Hampton, Va., 1983).

Gerdes, D.

G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

Grassl, H.

W. V. Smekot-Wensierski, B. Wozniak, H. Grassl, R. Doerffer, “Die Absorptionseigenschaften des marinen Phytoplanktons,” (GKSS Research Centre Geesthacht, Germany, 1992).

Haardt, H.

P. Diehl, H. Haardt, “Measurement of the spectral attenuation to support biological research in a ‘plankton tube’ experiment,” Oceanol. Acta 3, 89–96 (1982).

H. Haardt, P. Diehl, B. Knoppers, “Messungen des spektralen Attenuations-koeffizienten an Latexsuspensionen, Phytoplanktonkulturen und natürlichen Wasserproben aus der Ostsee,” (Kiel University, Kiel, Germany, 1979).

H. Haardt, H. Maske, “Variability of excitation, emission, and absorption spectra normalized to the chlorophyll concentration,” in The Use of Chlorophyll Fluorescence Measurements from Space for Separating Constituents of Sea Water, study carried out by order of the European Space Agency, ESA contract RFQ 3-5059/84/NL/MD (GKSS Research Centre Geesthacht, Geesthacht, Germany, 1986), Vol. 2, Appendix 16.

Hengstermann, T.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adratic Sea,” Int. J. Remote Sens. 14, 823–848 (1993).
[CrossRef]

Hesse, K.

G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

Jarrett, O.

F. H. Farmer, O. Jarrett, C. A. Brown, “Visible absorbance spectra: a basis for in situ and passive remote sensing of phytoplankton concentration and community composition,” NASA Tech. Paper 2094 (NASA, Langley Research Center, Hampton, Va., 1983).

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).

Kitchen, J. C.

J. C. Kitchen, J. R. V. Zaneveld, H. Pak, “Effect of particle size distribution and chlorophyll content on beam attenuation spectra,” Appl. Opt. 21, 3913–3918 (1982).
[CrossRef] [PubMed]

M. J. Borgerdon, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 373–385, (1990).
[CrossRef]

Knoppers, B.

H. Haardt, P. Diehl, B. Knoppers, “Messungen des spektralen Attenuations-koeffizienten an Latexsuspensionen, Phytoplanktonkulturen und natürlichen Wasserproben aus der Ostsee,” (Kiel University, Kiel, Germany, 1979).

Krause, G.

G. Krause, K. Ohm, “A method to measure suspended load transports in estuaries,” Estuar. Coast. Shelf Sci. 19, 611–618 (1984).
[CrossRef]

G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

Lundgren, B.

B. Lundgren, “Spectral transmittance measurements in the Baltic,” , (Copenhagen University, Institute of Physical Oceanography, Copenhagen, Denmark, 1976).

Maske, H.

H. Haardt, H. Maske, “Variability of excitation, emission, and absorption spectra normalized to the chlorophyll concentration,” in The Use of Chlorophyll Fluorescence Measurements from Space for Separating Constituents of Sea Water, study carried out by order of the European Space Agency, ESA contract RFQ 3-5059/84/NL/MD (GKSS Research Centre Geesthacht, Geesthacht, Germany, 1986), Vol. 2, Appendix 16.

Mie, G.

G. Mie, “Beiträage zur Optik trüber Medien, speziell kolloidaler Metalllösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Morel, A.

Y. H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

Where possible, the notation follows recommendations given in A. Morel, R. C. Smith, “Terminology and units in optical oceanography,” Mar. Geod. 5, 335–349 (1982).

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

A. Morel, “Optics of marine particles and marine optics,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer–Verlag, Berlin, 1991), pp. 141–188.
[CrossRef]

A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats experimentaux et approche théorique,” in Optics of the Sea (Interface and In-Water Transmission and Imaging), AGARD Lec. Ser.61, 3.1.1–3.1.76, (1973). Reprinted in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 65–97.

Ohm, K.

G. Krause, K. Ohm, “A method to measure suspended load transports in estuaries,” Estuar. Coast. Shelf Sci. 19, 611–618 (1984).
[CrossRef]

Pak, H.

Petzold, T. J.

R. W. Austin, T. J. Petzold, “Considerations in the design and evaluation of oceanic transmissometers,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, PA., 1977), pp. 104–120, 384.

Prieur, L.

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Reuter, R.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adratic Sea,” Int. J. Remote Sens. 14, 823–848 (1993).
[CrossRef]

R. Reuter, “Characterization of marine particle suspensions by light scattering. II. Experimental results,” Oceanol. Acta 3, 325–332 (1980).

Schaumann, K.

G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

Smekot-Wensierski, W. V.

W. V. Smekot-Wensierski, B. Wozniak, H. Grassl, R. Doerffer, “Die Absorptionseigenschaften des marinen Phytoplanktons,” (GKSS Research Centre Geesthacht, Germany, 1992).

Smith, R. C.

Where possible, the notation follows recommendations given in A. Morel, R. C. Smith, “Terminology and units in optical oceanography,” Mar. Geod. 5, 335–349 (1982).

Spinrad, R. W.

R. W. Spinrad, “Use of specific beam attenuation coefficient for identification of suspended particulate material,” in Ocean Optics VIII, M. A. Blizard, ed., Proc. SPIE637, 135–140, (1986).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wozniak, B.

W. V. Smekot-Wensierski, B. Wozniak, H. Grassl, R. Doerffer, “Die Absorptionseigenschaften des marinen Phytoplanktons,” (GKSS Research Centre Geesthacht, Germany, 1992).

Zaneveld, J. R. V.

J. C. Kitchen, J. R. V. Zaneveld, H. Pak, “Effect of particle size distribution and chlorophyll content on beam attenuation spectra,” Appl. Opt. 21, 3913–3918 (1982).
[CrossRef] [PubMed]

M. J. Borgerdon, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 373–385, (1990).
[CrossRef]

Ann. Phys. (Leipzig)

G. Mie, “Beiträage zur Optik trüber Medien, speziell kolloidaler Metalllösungen,” Ann. Phys. (Leipzig) 25, 377–445 (1908).
[CrossRef]

Appl. Opt.

Deep Sea Res.

Y. H. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep Sea Res. 39, 1835–1855 (1992).
[CrossRef]

Estuar. Coast. Shelf Sci.

G. Krause, K. Ohm, “A method to measure suspended load transports in estuaries,” Estuar. Coast. Shelf Sci. 19, 611–618 (1984).
[CrossRef]

Int. J. Remote Sens.

R. Reuter, D. Diebel, T. Hengstermann, “Oceanographic laser remote sensing: measurements of hydrographic fronts in the German Bight and in the Northern Adratic Sea,” Int. J. Remote Sens. 14, 823–848 (1993).
[CrossRef]

Limnol. Oceanogr.

A. Bricaud, A. Morel, L. Prieur, “Optical efficiency factors of some phytoplankters,” Limnol. Oceanogr. 28, 816–832 (1983).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Mar. Geod.

Where possible, the notation follows recommendations given in A. Morel, R. C. Smith, “Terminology and units in optical oceanography,” Mar. Geod. 5, 335–349 (1982).

Oceanol. Acta

R. Reuter, “Characterization of marine particle suspensions by light scattering. II. Experimental results,” Oceanol. Acta 3, 325–332 (1980).

P. Diehl, H. Haardt, “Measurement of the spectral attenuation to support biological research in a ‘plankton tube’ experiment,” Oceanol. Acta 3, 89–96 (1982).

Other

R. W. Spinrad, “Use of specific beam attenuation coefficient for identification of suspended particulate material,” in Ocean Optics VIII, M. A. Blizard, ed., Proc. SPIE637, 135–140, (1986).
[CrossRef]

B. Lundgren, “Spectral transmittance measurements in the Baltic,” , (Copenhagen University, Institute of Physical Oceanography, Copenhagen, Denmark, 1976).

H. Haardt, P. Diehl, B. Knoppers, “Messungen des spektralen Attenuations-koeffizienten an Latexsuspensionen, Phytoplanktonkulturen und natürlichen Wasserproben aus der Ostsee,” (Kiel University, Kiel, Germany, 1979).

M. J. Borgerdon, R. Bartz, J. R. V. Zaneveld, J. C. Kitchen, “A modern spectral transmissometer,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 373–385, (1990).
[CrossRef]

A. Morel, “Optics of marine particles and marine optics,” in Particle Analysis in Oceanography, S. Demers, ed. (Springer–Verlag, Berlin, 1991), pp. 141–188.
[CrossRef]

A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats experimentaux et approche théorique,” in Optics of the Sea (Interface and In-Water Transmission and Imaging), AGARD Lec. Ser.61, 3.1.1–3.1.76, (1973). Reprinted in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 65–97.

F. H. Farmer, O. Jarrett, C. A. Brown, “Visible absorbance spectra: a basis for in situ and passive remote sensing of phytoplankton concentration and community composition,” NASA Tech. Paper 2094 (NASA, Langley Research Center, Hampton, Va., 1983).

W. V. Smekot-Wensierski, B. Wozniak, H. Grassl, R. Doerffer, “Die Absorptionseigenschaften des marinen Phytoplanktons,” (GKSS Research Centre Geesthacht, Germany, 1992).

A. Morel, A. Bricaud, “Theoretical results concerning the optics of phytoplankton, with special reference to remote sensing applications,” in Oceanography from Space, J. F. R. Gower, ed. (Plenum, New York, 1981), pp. 313–327.
[CrossRef]

H. Haardt, H. Maske, “Variability of excitation, emission, and absorption spectra normalized to the chlorophyll concentration,” in The Use of Chlorophyll Fluorescence Measurements from Space for Separating Constituents of Sea Water, study carried out by order of the European Space Agency, ESA contract RFQ 3-5059/84/NL/MD (GKSS Research Centre Geesthacht, Geesthacht, Germany, 1986), Vol. 2, Appendix 16.

R. W. Austin, T. J. Petzold, “Considerations in the design and evaluation of oceanic transmissometers,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, PA., 1977), pp. 104–120, 384.

R. W. Austin, “Precision considerations in the measurement of volume attenuation coefficient,” in Light in the Sea, J. E. Tyler, ed. (Dowden, Hutchinson and Ross, Stroudsberg, Pa., 1977), pp. 121–124.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

G. Krause, G. Budeus, D. Gerdes, K. Schaumann, K. Hesse, “Frontal systems in the German Bight and their physical and biological effects,” in Marine Interfaces Ecohydrodynamics, J. C. J. Nihoul, ed., Vol. 42 of Elsevier Oceanography Series (Elsevier, New York, 1986), pp. 119–140.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the PAAL.

Fig. 2
Fig. 2

Measured and reconstructed spectrum of the attenuation coefficient of a laboratory culture Dunaliella tertiolecta. Reconstruction with the Monte Carlo data inversion method, with details of the contributions from phytoplankton cpp, transparent particles ctp, and gelbstoff ad.

Fig. 3
Fig. 3

Spectrum of the attenuation coefficient measured in the Elbe river near Geesthacht, 6 July 1994, and its reconstruction with the Monte Carlo data inversion method.

Fig. 4
Fig. 4

Same as Fig. 3 except for measurement in the German Bight, 6 May 1994.

Fig. 5
Fig. 5

Time-series measurement in the Elbe river near Geesthacht, Germany, on 6 July 1994. Filled squares describe the chlorophyll a concentration derived from spectra of the attenuation coefficient with the Monte Carlo data inversion method. An example of these spectra is shown in Fig. 3. Numerical values at six data points denote the chlorophyll a concentration measured with high-performance liquid chromatography on filtered samples.

Fig. 6
Fig. 6

Spectrum of the attenuation coefficient taken from the data set in Figs. 8 and 9. Reconstruction with the real-time inversion method.

Fig. 7
Fig. 7

Same measurement as in Fig. 6 except for reconstruction with the Monte Carlo data inversion.

Fig. 8
Fig. 8

Depth profile of temperature, salinity, and gelbstoff absorption coefficient ad (375 nm) in the German Bight, 54°10’N, 8°05’E, on 27 May 1994. Reconstruction of ad with the real-time inversion method.

Fig. 9
Fig. 9

Depth profile of the total particle volume and the Junge coefficient cj at the same position as in Fig. 8. Reconstruction with the real-time inversion method.

Fig. 10
Fig. 10

Contour plot of the gelbstoff absorption coefficient ad (375 nm) in the German Bight, 27 May 1994, on a west–east transect at latitude 54°15.0’N from 8°01.1’E to 8°33.5 E. Depth profiles were taken at eight stations, from which lines of constant gelbstoff absorption were derived with the real-time inversion method.

Fig. 11
Fig. 11

Contour plot of the distribution of the total suspended particle (seston) volume on the same transect as in Fig. 10.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

cλ=cwλ+cppλ+ctpλ+adλm-1,
cλ-cwλ=αcpp*λ+βctp*λ+γad*λ,
ntpr=dNtpdr,
ntpr/ro=br/ro-cj,
ctp*λ=λ3-cj.
ad*λ=exp-sλ-λo
Qattρ=2-4/ρ sin ρ+4/ρ21-cos ρ, with ρ=4πrλn-1,
cλ-cwλ=δcp*λ+γad*λ,
cpλ=rminrmaxnprQattr, λπf2dr.
cpλ=b ro2λ3-cj2πro3-cjαminαmaxα2-cjπQattαdα.
δ=ro2b2πro3-cjαminαmaxα2-cjπQattαdα.
Rcj=αminαmax α2-cjπQattαdα
Rcj=677917cj-10.11+0.51,
D=cλ-cwλ-fcj.
Vp=43 π rminrmaxnprr3dr.
Qatt, ρ=2-4e-ρtan sinρ-cos ρ-4e+ρtan×cosρ-2cos2 ρ2+4cos2 ρ2cos 2,
cppλ=NppQattro, n, n, λπro2.
chla=43πNro3Cpig.
D=cλ-cwλ-αcpp*λ-βctp*λ-γad*λ

Metrics