Abstract

We have optimized plasma-enhanced chemical vapor deposition (PECVD) of SiN-based antireflection (AR) coatings with special consideration for the short-wavelength (<600 nm) parasitic absorption in SiN. Spectroscopic ellipsometry was used to measure the dispersion relation for both the refractive index n and the extinction coefficient k, allowing a precise analysis of the trade-off between reflection and absorption in SiN-based AR coatings. Although we focus on photovoltaic applications, this study may be useful for photodetectors, IR optics, and any device for which it is essential to maximize the transmission of light into silicon. We designed and optimized various AR coatings for minimal average (spectrally) weighted reflectance (〈Rw〉) and average weighted absorptance (〈Aw〉), using the air mass 1.5 global solar spectrum. In most situations 〈Rw〉 decreased with higher n, but 〈Aw〉 increased because k increased with n. For the practical case of a single-layer AR coating for silicon under glass, an optimum refractive index of ∼2.23 (at 632.8 nm) was determined. Further simulations revealed that a double-layer SiN stack with an n = 2.42 film underneath an n = 2.03 film gives the minimum total photocurrent loss. Similar optimization of double-layer SiN/SiO2 coatings for silicon in air revealed an optimum of n = 2.28 for SiN. To determine the allowable tolerance in index and film thickness, we generated isotransmittance plots, which revealed more leeway for n values below the optimum than above because absorption begins to reduce photocurrent for high n values.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
    [CrossRef]
  2. J. Schmidt, T. Lauinger, A. Aberle, R. Hezel, “Record low surface recombination velocities on low-resistivity silicon solar cell substrates,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 413–416.
  3. H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
    [CrossRef]
  4. P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.
  5. W. A. Lanford, M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
    [CrossRef]
  6. G. Morello, “Hydrogen content of amorphous PECVD SiNx:H films by infrared spectroscopy and hydrogen forward scattering results,” J. Non-Cryst. Solids 187, 308–312 (1995).
    [CrossRef]
  7. N. Mardesich, “Solar cell efficiency enhancement by junction etching and conductive AR coating processes,” in Conference Record, 15th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1981), pp. 446–449.
  8. S. Wenham, M. Willison, S. Narayanan, M. Green, “Efficency improvement in scren printed polycrystalline silicon solar cells by plasma treatments,” in Conference Record, 18th IEEE Photovoltaic Specialists Conference (International Electrical and Electronic Engineers, New York, 1985), pp. 1008–1013.
  9. D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.
  10. M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.
  11. D. S. Ruby, W. Wilbanks, C. Fleddermann, “A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1335–1338.
  12. T. Saitoh, O. Kamataki, T. Uematsu, “Optimization of antireflection film structures for surface-passivated crystalline silicon solar cells,” Jpn. J. Appl. Phys. 33, 1809–1813 (1994).
    [CrossRef]
  13. A. Conrady, Applied Optics and Optical Design (Dover, New York, 1960).
  14. G. E. Jellison, F. A. Modine, “Two channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
    [CrossRef] [PubMed]
  15. D. A. G. Bruggeman, “Berechnung verschiedener physikalisher konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
    [CrossRef]
  16. G. E. Jellison, F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
    [CrossRef]
  17. G. E. Jellison, “Use of the biased estimator in the interpretation of spectroscopic ellipsometry data,” Appl. Opt. 30, 3354–3360 (1991).
    [CrossRef] [PubMed]
  18. G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
    [CrossRef]
  19. P. Basore, “PC-1D version 3: improved speed and convergence,” in Conference Record, 22nd IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1991), pp. 299–302.
  20. H. R. Phillip, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960).
    [CrossRef]
  21. M. Green, High Efficiency Silicon Solar Cells (Trans Tech, Aedermannsdorf, Switzerland, 1987), pp. 228–231.
  22. G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
    [CrossRef]
  23. F. Pedrotti, L. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 455–490.
  24. cams software, Optikos Corp., 286 Cardinal Medeiros Ave., Cambridge, MA, 02141.
  25. L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
    [CrossRef]
  26. Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
    [CrossRef]

1996 (3)

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

G. E. Jellison, F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
[CrossRef]

1995 (2)

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

G. Morello, “Hydrogen content of amorphous PECVD SiNx:H films by infrared spectroscopy and hydrogen forward scattering results,” J. Non-Cryst. Solids 187, 308–312 (1995).
[CrossRef]

1994 (1)

T. Saitoh, O. Kamataki, T. Uematsu, “Optimization of antireflection film structures for surface-passivated crystalline silicon solar cells,” Jpn. J. Appl. Phys. 33, 1809–1813 (1994).
[CrossRef]

1993 (2)

Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
[CrossRef]

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[CrossRef]

1991 (1)

1990 (1)

1978 (1)

W. A. Lanford, M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[CrossRef]

1960 (1)

H. R. Phillip, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960).
[CrossRef]

1958 (1)

G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalisher konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
[CrossRef]

Aberle, A.

J. Schmidt, T. Lauinger, A. Aberle, R. Hezel, “Record low surface recombination velocities on low-resistivity silicon solar cell substrates,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 413–416.

Alkemade, P. F. A.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Barnett, A.

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

Basore, P.

P. Basore, “PC-1D version 3: improved speed and convergence,” in Conference Record, 22nd IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1991), pp. 299–302.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalisher konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
[CrossRef]

Cai, L.

L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
[CrossRef]

Chen, Z.

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
[CrossRef]

Conrady, A.

A. Conrady, Applied Optics and Optical Design (Dover, New York, 1960).

Denisse, C. M. M.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Eikelboom, J. A.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Elgamel, H.

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

El-Sayed, M. A.

L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
[CrossRef]

Fleddermann, C.

D. S. Ruby, W. Wilbanks, C. Fleddermann, “A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1335–1338.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

Green, M.

S. Wenham, M. Willison, S. Narayanan, M. Green, “Efficency improvement in scren printed polycrystalline silicon solar cells by plasma treatments,” in Conference Record, 18th IEEE Photovoltaic Specialists Conference (International Electrical and Electronic Engineers, New York, 1985), pp. 1008–1013.

M. Green, High Efficiency Silicon Solar Cells (Trans Tech, Aedermannsdorf, Switzerland, 1987), pp. 228–231.

Hendriks, M.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Hezel, R.

J. Schmidt, T. Lauinger, A. Aberle, R. Hezel, “Record low surface recombination velocities on low-resistivity silicon solar cell substrates,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 413–416.

Jellison, G. E.

G. E. Jellison, F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[CrossRef]

G. E. Jellison, “Use of the biased estimator in the interpretation of spectroscopic ellipsometry data,” Appl. Opt. 30, 3354–3360 (1991).
[CrossRef] [PubMed]

G. E. Jellison, F. A. Modine, “Two channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
[CrossRef] [PubMed]

Kamataki, O.

T. Saitoh, O. Kamataki, T. Uematsu, “Optimization of antireflection film structures for surface-passivated crystalline silicon solar cells,” Jpn. J. Appl. Phys. 33, 1809–1813 (1994).
[CrossRef]

Lanford, W. A.

W. A. Lanford, M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[CrossRef]

Lauinger, T.

J. Schmidt, T. Lauinger, A. Aberle, R. Hezel, “Record low surface recombination velocities on low-resistivity silicon solar cell substrates,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 413–416.

Leguijt, C.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Lölgen, P.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

MacFarlane, G. G.

G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
[CrossRef]

Mardesich, N.

N. Mardesich, “Solar cell efficiency enhancement by junction etching and conductive AR coating processes,” in Conference Record, 15th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1981), pp. 446–449.

Marée, C. H. M.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

McLean, T. P.

G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
[CrossRef]

Michiels, P. P.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Modine, F. A.

G. E. Jellison, F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

G. E. Jellison, F. A. Modine, “Two channel polarization modulation ellipsometer,” Appl. Opt. 29, 959–974 (1990).
[CrossRef] [PubMed]

Morello, G.

G. Morello, “Hydrogen content of amorphous PECVD SiNx:H films by infrared spectroscopy and hydrogen forward scattering results,” J. Non-Cryst. Solids 187, 308–312 (1995).
[CrossRef]

Narayanan, S.

S. Wenham, M. Willison, S. Narayanan, M. Green, “Efficency improvement in scren printed polycrystalline silicon solar cells by plasma treatments,” in Conference Record, 18th IEEE Photovoltaic Specialists Conference (International Electrical and Electronic Engineers, New York, 1985), pp. 1008–1013.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

Nijs, J.

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

Pedrotti, F.

F. Pedrotti, L. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 455–490.

Pedrotti, L.

F. Pedrotti, L. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 455–490.

Phillip, H. R.

H. R. Phillip, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960).
[CrossRef]

Poortmans, J.

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

Quarrington, J. E.

G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
[CrossRef]

Rand, M. J.

W. A. Lanford, M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[CrossRef]

Roberts, V.

G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
[CrossRef]

Rohatgi, A.

L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
[CrossRef]

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
[CrossRef]

Roncin, S.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

Rosenblum, M.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

Rosmeulen, M.

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

Ruby, D. S.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

D. S. Ruby, W. Wilbanks, C. Fleddermann, “A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1335–1338.

Saitoh, T.

T. Saitoh, O. Kamataki, T. Uematsu, “Optimization of antireflection film structures for surface-passivated crystalline silicon solar cells,” Jpn. J. Appl. Phys. 33, 1809–1813 (1994).
[CrossRef]

Salami, J.

Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
[CrossRef]

Sana, P.

Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
[CrossRef]

Sarro, P. M.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Schmidt, J.

J. Schmidt, T. Lauinger, A. Aberle, R. Hezel, “Record low surface recombination velocities on low-resistivity silicon solar cell substrates,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 413–416.

Schuurmans, F. M.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Sinke, W.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Sinke, W. C.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Stroom, J.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Taft, E. A.

H. R. Phillip, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960).
[CrossRef]

Trauwaert, M.

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

Uematsu, T.

T. Saitoh, O. Kamataki, T. Uematsu, “Optimization of antireflection film structures for surface-passivated crystalline silicon solar cells,” Jpn. J. Appl. Phys. 33, 1809–1813 (1994).
[CrossRef]

van Zolingen, R. J. C.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Vanhellemont, J.

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

Verhoef, L.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

Verhoef, L. A.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Vinckier, C.

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

Weeber, A. W.

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Wenham, S.

S. Wenham, M. Willison, S. Narayanan, M. Green, “Efficency improvement in scren printed polycrystalline silicon solar cells by plasma treatments,” in Conference Record, 18th IEEE Photovoltaic Specialists Conference (International Electrical and Electronic Engineers, New York, 1985), pp. 1008–1013.

Wilbanks, W.

D. S. Ruby, W. Wilbanks, C. Fleddermann, “A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1335–1338.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

Willison, M.

S. Wenham, M. Willison, S. Narayanan, M. Green, “Efficency improvement in scren printed polycrystalline silicon solar cells by plasma treatments,” in Conference Record, 18th IEEE Photovoltaic Specialists Conference (International Electrical and Electronic Engineers, New York, 1985), pp. 1008–1013.

Yang, D.

L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
[CrossRef]

Ann. Phys. (Leipzig) (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalisher konstanten von heterogenen substanzen,” Ann. Phys. (Leipzig) 24, 636–664 (1935).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. E. Jellison, F. A. Modine, “Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69, 371–373 (1996).
[CrossRef]

IEEE Trans. Electron Devices (1)

Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for silicon solar cells,” IEEE Trans. Electron Devices 40, 1161 (1993).
[CrossRef]

J. Appl. Phys. (3)

L. Cai, D. Yang, M. A. El-Sayed, A. Rohatgi, “Effects of rapid thermal anneal on refractive index and hydrogen content of plasma-enhanced chemical vapor deposited silicon nitride films,” J. Appl. Phys. 80, 5384–5388 (1996).
[CrossRef]

H. Elgamel, A. Barnett, A. Rohatgi, Z. Chen, C. Vinckier, J. Nijs, “Efficient combination of surface and bulk passivation schemes of high-efficiency multicrystalline silicon solar cells,” J. Appl. Phys. 78, 3457–3461 (1995).
[CrossRef]

W. A. Lanford, M. J. Rand, “The hydrogen content of plasma-deposited silicon nitride,” J. Appl. Phys. 49, 2473–2477 (1978).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Morello, “Hydrogen content of amorphous PECVD SiNx:H films by infrared spectroscopy and hydrogen forward scattering results,” J. Non-Cryst. Solids 187, 308–312 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Saitoh, O. Kamataki, T. Uematsu, “Optimization of antireflection film structures for surface-passivated crystalline silicon solar cells,” Jpn. J. Appl. Phys. 33, 1809–1813 (1994).
[CrossRef]

Phys. Rev. (2)

H. R. Phillip, E. A. Taft, “Optical constants of silicon in the region 1 to 10 eV,” Phys. Rev. 120, 37–38 (1960).
[CrossRef]

G. G. MacFarlane, T. P. McLean, J. E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of semiconductors,” Phys. Rev. 111, 1245 (1958).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

C. Leguijt, P. Lölgen, J. A. Eikelboom, A. W. Weeber, F. M. Schuurmans, W. C. Sinke, P. F. A. Alkemade, P. M. Sarro, C. H. M. Marée, L. A. Verhoef, “Low temperature surface passivation for silicon solar cells,” Sol. Energy Mater. Sol. Cells 40, 297–345 (1996).
[CrossRef]

Thin Solid Films (1)

G. E. Jellison, “Data analysis for spectroscopic ellipsometry,” Thin Solid Films 234, 416–422 (1993).
[CrossRef]

Other (12)

P. Basore, “PC-1D version 3: improved speed and convergence,” in Conference Record, 22nd IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1991), pp. 299–302.

M. Green, High Efficiency Silicon Solar Cells (Trans Tech, Aedermannsdorf, Switzerland, 1987), pp. 228–231.

A. Conrady, Applied Optics and Optical Design (Dover, New York, 1960).

J. Schmidt, T. Lauinger, A. Aberle, R. Hezel, “Record low surface recombination velocities on low-resistivity silicon solar cell substrates,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 413–416.

P. P. Michiels, L. Verhoef, J. Stroom, W. Sinke, R. J. C. van Zolingen, C. M. M. Denisse, M. Hendriks, “Hydrogen passivation of polycrystalline silicon solar cells by plasma deposition of silicon nitride,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1996), Vol. 1, pp. 638–643.

N. Mardesich, “Solar cell efficiency enhancement by junction etching and conductive AR coating processes,” in Conference Record, 15th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 1981), pp. 446–449.

S. Wenham, M. Willison, S. Narayanan, M. Green, “Efficency improvement in scren printed polycrystalline silicon solar cells by plasma treatments,” in Conference Record, 18th IEEE Photovoltaic Specialists Conference (International Electrical and Electronic Engineers, New York, 1985), pp. 1008–1013.

D. S. Ruby, W. Wilbanks, C. Fleddermann, M. Rosenblum, S. Roncin, S. Narayanan, “Optimization of plasma deposition and etching processes for commercial multicrystalline silicon solar cells,” in Conference Record, 25th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 637–640.

M. Rosmeulen, H. Elgamel, J. Poortmans, M. Trauwaert, J. Vanhellemont, J. Nijs, “A study on the microscopical effects of hydrogenation on the performance of multicrystalline solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1621–1624.

D. S. Ruby, W. Wilbanks, C. Fleddermann, “A statistical analysis of the effect of PECVD deposition parameters on surface and bulk recombination in silicon solar cells,” in Conference Record, 24th IEEE Photovoltaic Specialists Conference (International Electrical and Electronics Engineers, New York, 1996), pp. 1335–1338.

F. Pedrotti, L. Pedrotti, Introduction to Optics (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 455–490.

cams software, Optikos Corp., 286 Cardinal Medeiros Ave., Cambridge, MA, 02141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Index of refraction for SiN films measured from spectroscopic ellipsometry data.

Fig. 2
Fig. 2

Extinction coefficient for SiN films measured from spectroscopic ellipsometry data.

Fig. 3
Fig. 3

Distribution of photocurrent density available under (1-sun) air mass 1.5 global solar spectrum used for spectral weighting of reflectance, absorptance, and transmittance.

Fig. 4
Fig. 4

Plots of reflectance plus absorptance (or one transmittance) for SiN single-layer AR coatings under glass. Thickness was optimized for each index as shown in Table 2. Dotted curves with open symbols show reflectance only, no absorption.

Fig. 5
Fig. 5

Isotransmittance curves for SiN single-layer AR coatings under glass. Curves are labeled with the amount of additional photocurrent loss from the optimum, which is at n = 2.23 and a thickness of 680 Å.

Fig. 6
Fig. 6

Plots of reflectance plus absorptance (or one minus transmittance) for SiN single-layer AR coatings in air. Thickness was optimized for each refractive index as shown in Table 3. Dotted curves with open symbols show reflectance only, no absorption.

Fig. 7
Fig. 7

Plots of reflectance plus absorptance (or one minus transmittance) for SiN/SiO2 double-layer AR coatings in air. Thickness was optimized for each refractive index as shown in Table 4. Dotted curves with open symbols show reflectance only, no absorption.

Fig. 8
Fig. 8

Isotransmittance curves for the case of SiN/SiO2 double-layer AR coatings with the SiN refractive index fixed at 2.28 at 632.8 nm. Curves are labeled with the additional photocurrent loss from the optimum, which is at thickness values of 610 Å for SiN and 980 Å for SiO2.

Fig. 9
Fig. 9

Isotransmittance curves for SiN/SiO2 double-layer AR coatings in air. Curves are labeled with the amount of additional photocurrent loss from the optimum, which is at n = 2.28 and thickness of 610 Å for SiN. SiO2 thickness was fixed at 980 Å.

Fig. 10
Fig. 10

Best double-layer AR coatings for silicon in air. Thickness of each layer was optimized as shown in Tables 46. Slight reduction of the “hump” (in the 500- to 700-nm range) occurs by replacing SiO2 with MgF2. Passivating 10-nm oxide shows almost no increase in reflectance.

Tables (7)

Tables Icon

Table 1 Fitted Parameters from the Spectroscopic Ellipsometry Data of the 10 Films

Tables Icon

Table 2 Correlated Errors for the n(632.8) = 2.42 Filma

Tables Icon

Table 3 Single Layer AR Coatings of SiN, Under Glass

Tables Icon

Table 4 Single-Layer SiN, in Air

Tables Icon

Table 5 SiN/SiO2 Double-Layer AR Coatings, in Air

Tables Icon

Table 6 SiN/MgF2 Double-Layer AR Coatings, in Air

Tables Icon

Table 7 Ten-nm SiO2 + SiN/MgF2 Double Layer AR Coatings, in Air

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

nλ=N+Bλ+Cλ3.5,
N=cos2Ψ,
S=sin2ΨsinΔ
C=sin2ΨcosΔ
ρ=rprs=tanΨexpi·Δ=C+iS1+N,
2TLE=AE0CE-Eg2E2-E022+C2E21EE>Eg    =0EEg.
1E=1+2πPEgξ2ξξ2-E2dξ,
nE=Re1E-i·2TLE1/2,
kE=Im1E-i·2TLE1/2.
k=αλ4π,
Jpcl=q λNphλ|AM1.5GRλIQEλ+q λNphλ|AM1.5GAλIQEλ=Jpcl|refl+Jpcl|abs,
Jpcλ=qNphλ|AM1.5G=qPλ|AM1.5GEphλ=qPλ|AM1.5Ghcλ=Pλ|AM1.5G1.24eV/λμm.
Ywλ=400nm1100nmYλJpcλλ=400nm1100nmJpcλ,
Tw=1-Rw+Aw.
Jpcl=Rw+Awλ=400nm1100nmJpcλ=1-Twλ=400nm1100nmJpcλ.

Metrics