Abstract

Spatial beam cleanup of a distorted cw Nd:YAG laser operating at λ = 1.06 µm is demonstrated with two-wave mixing in an infrared-sensitive rhodium-doped barium titanate crystal. Because of the high coupling gain of our crystal, high efficiencies are achieved in agreement with the standard photorefractive model.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
    [CrossRef]
  2. H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS-phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
    [CrossRef]
  3. R. P. M. Green, G. J. Crofts, M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
    [PubMed]
  4. A. Brignon, J.-P. Huignard, “Nd:YAG amplifier with a semiconductor phase-conjugate mirror,” Opt. Lett. 20, 1710–1712 (1995).
    [CrossRef] [PubMed]
  5. A. Brignon, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442–444 (1997).
    [CrossRef] [PubMed]
  6. A. E. Chiou, P. Yeh, “Beam cleanup using photorefractive two-wave mixing,” Opt. Lett. 10, 621–623 (1985).
    [CrossRef] [PubMed]
  7. A. E. Chiou, P. Yeh, “Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461–463 (1986).
    [CrossRef] [PubMed]
  8. L. Mager, “Correction de fronts d’onde de faisceaux lasers impulsionnels par mélange d’ondes photoréfractif,” Thèse de doctorat en Sciences Physiques (Université de Paris XI, Orsay, France, 1994).
  9. W. R. Christian, I. C. McMichael, “Laser-beam cleanup at 830 nm,” in Nonlinear Optical Beam Manipulation and High Energy Beam Propagation Through the Atmosphere, R. A. Fisher, L. E. Wilson, eds., Proc. SPIE1060, 113–118 (1989).
    [CrossRef]
  10. J. M. Verdiell, H. Rajbenbach, J.-P. Huignard, “Efficient diffraction-limited beam combining of semiconductor laser diode arrays using photorefractive BaTiO3,” IEEE Photonics Technol. Lett. 2, 568–570 (1990).
    [CrossRef]
  11. T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.
  12. B. A. Wechsler, M. B. Klein, C. C. Nelson, R. N. Schwartz, “Spectroscopic and photorefractive properties of infrared-sensitive rhodium-doped barium titanate,” Opt. Lett. 19, 536–538 (1994).
    [CrossRef] [PubMed]
  13. M. Kaczmarek, R. W. Eason, “Very-high-gain single-pass two-beam coupling in blue Rh:BaTiO3,” Opt. Lett. 20, 1850–1852 (1995).
    [CrossRef] [PubMed]
  14. N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
    [CrossRef]
  15. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
    [CrossRef]
  16. A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
    [CrossRef]
  17. A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. 24, 131–138 (1981).
    [CrossRef]
  18. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  19. Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
    [CrossRef]
  20. G. A. Brost, R. A. Motes, J. R. Rotge, “Intensity-dependent absorption and photorefractive effects in barium titanate,” J. Opt. Soc. Am. B 5, 1879–1885 (1988).
    [CrossRef]
  21. M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
    [CrossRef]
  22. H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
    [CrossRef]
  23. U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
    [CrossRef]
  24. A. Takada, M. Cronin-Golomb, “Laser beam cleanup with photorefractive two-beam coupling,” Opt. Lett. 20, 1459–1461 (1995).
    [CrossRef] [PubMed]
  25. Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  26. C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
    [CrossRef]
  27. L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving gratings,” J. Opt. Soc. Am. A 7, 1554–1561 (1990).
    [CrossRef]

1997 (3)

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
[CrossRef]

A. Brignon, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442–444 (1997).
[CrossRef] [PubMed]

1996 (2)

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

1995 (5)

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
[CrossRef]

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS-phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

A. Takada, M. Cronin-Golomb, “Laser beam cleanup with photorefractive two-beam coupling,” Opt. Lett. 20, 1459–1461 (1995).
[CrossRef] [PubMed]

A. Brignon, J.-P. Huignard, “Nd:YAG amplifier with a semiconductor phase-conjugate mirror,” Opt. Lett. 20, 1710–1712 (1995).
[CrossRef] [PubMed]

M. Kaczmarek, R. W. Eason, “Very-high-gain single-pass two-beam coupling in blue Rh:BaTiO3,” Opt. Lett. 20, 1850–1852 (1995).
[CrossRef] [PubMed]

1994 (3)

1993 (1)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

1990 (2)

J. M. Verdiell, H. Rajbenbach, J.-P. Huignard, “Efficient diffraction-limited beam combining of semiconductor laser diode arrays using photorefractive BaTiO3,” IEEE Photonics Technol. Lett. 2, 568–570 (1990).
[CrossRef]

L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving gratings,” J. Opt. Soc. Am. A 7, 1554–1561 (1990).
[CrossRef]

1988 (2)

1986 (2)

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

A. E. Chiou, P. Yeh, “Laser-beam cleanup using photorefractive two-wave mixing and optical phase conjugation,” Opt. Lett. 11, 461–463 (1986).
[CrossRef] [PubMed]

1985 (2)

A. E. Chiou, P. Yeh, “Beam cleanup using photorefractive two-wave mixing,” Opt. Lett. 10, 621–623 (1985).
[CrossRef] [PubMed]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

1981 (1)

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Au, L. B.

Brignon, A.

Brost, G. A.

Buse, K.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

Chiou, A. E.

Christian, W. R.

W. R. Christian, I. C. McMichael, “Laser-beam cleanup at 830 nm,” in Nonlinear Optical Beam Manipulation and High Energy Beam Propagation Through the Atmosphere, R. A. Fisher, L. E. Wilson, eds., Proc. SPIE1060, 113–118 (1989).
[CrossRef]

Conahan, S. G.

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Crofts, G. J.

Cronin-Golomb, M.

Damzen, M. J.

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

R. P. M. Green, G. J. Crofts, M. J. Damzen, “Holographic laser resonators in Nd:YAG,” Opt. Lett. 19, 393–395 (1994).
[PubMed]

Eason, R. W.

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

M. Kaczmarek, R. W. Eason, “Very-high-gain single-pass two-beam coupling in blue Rh:BaTiO3,” Opt. Lett. 20, 1850–1852 (1995).
[CrossRef] [PubMed]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Eichler, H. J.

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS-phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

Fainman, Y.

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Garrett, M. H.

A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
[CrossRef]

A. Brignon, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442–444 (1997).
[CrossRef] [PubMed]

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Geffroy, D.

A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
[CrossRef]

Green, R. P. M.

Günter, P.

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Haase, A.

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS-phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

Hesse, H.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
[CrossRef]

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Huignard, J.-P.

A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
[CrossRef]

A. Brignon, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442–444 (1997).
[CrossRef] [PubMed]

A. Brignon, J.-P. Huignard, “Nd:YAG amplifier with a semiconductor phase-conjugate mirror,” Opt. Lett. 20, 1710–1712 (1995).
[CrossRef] [PubMed]

J. M. Verdiell, H. Rajbenbach, J.-P. Huignard, “Efficient diffraction-limited beam combining of semiconductor laser diode arrays using photorefractive BaTiO3,” IEEE Photonics Technol. Lett. 2, 568–570 (1990).
[CrossRef]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Huot, N.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

Jenssen, H. P.

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Jeong, J. S.

C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
[CrossRef]

Jonathan, J. M. C.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

Kaczmarek, M.

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

M. Kaczmarek, R. W. Eason, “Very-high-gain single-pass two-beam coupling in blue Rh:BaTiO3,” Opt. Lett. 20, 1850–1852 (1995).
[CrossRef] [PubMed]

Kämper, S.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

Klancnik, E.

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Klein, M. B.

Krätzig, E.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

Kröse, H.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Kwak, C. H.

C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
[CrossRef]

Lee, E.-H.

C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
[CrossRef]

Lee, S. H.

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Mager, L.

L. Mager, “Correction de fronts d’onde de faisceaux lasers impulsionnels par mélange d’ondes photoréfractif,” Thèse de doctorat en Sciences Physiques (Université de Paris XI, Orsay, France, 1994).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Marrakchi, A.

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

McMichael, I. C.

W. R. Christian, I. C. McMichael, “Laser-beam cleanup at 830 nm,” in Nonlinear Optical Beam Manipulation and High Energy Beam Propagation Through the Atmosphere, R. A. Fisher, L. E. Wilson, eds., Proc. SPIE1060, 113–118 (1989).
[CrossRef]

McNamara, T. W.

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Menzel, R.

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS-phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

Mnushkina, I.

A. Brignon, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Nd:YAG master-oscillator power amplifier with a rhodium-doped BaTiO3 self-pumped phase-conjugate mirror,” Opt. Lett. 22, 442–444 (1997).
[CrossRef] [PubMed]

A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
[CrossRef]

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Motes, R. A.

Nelson, C. C.

Odoulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Park, S. Y.

C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
[CrossRef]

Pauliat, G.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

Rajbenbach, H.

J. M. Verdiell, H. Rajbenbach, J.-P. Huignard, “Efficient diffraction-limited beam combining of semiconductor laser diode arrays using photorefractive BaTiO3,” IEEE Photonics Technol. Lett. 2, 568–570 (1990).
[CrossRef]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Ramos-Garcia, R.

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

Réfrégier, Ph.

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Rockwell, D. A.

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

Roosen, G.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

Ross, G. W.

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Rotge, J. R.

Rytz, D.

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

Scharfschwerdt, R.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
[CrossRef]

Schirmer, O. F.

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
[CrossRef]

Schwartz, R. N.

Solymar, L.

L. B. Au, L. Solymar, “Higher harmonic gratings in photorefractive materials at large modulation with moving gratings,” J. Opt. Soc. Am. A 7, 1554–1561 (1990).
[CrossRef]

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Suh, H. H.

C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
[CrossRef]

Takada, A.

van Stevendaal, U.

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

Verdiell, J. M.

J. M. Verdiell, H. Rajbenbach, J.-P. Huignard, “Efficient diffraction-limited beam combining of semiconductor laser diode arrays using photorefractive BaTiO3,” IEEE Photonics Technol. Lett. 2, 568–570 (1990).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Warde, C.

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Wechsler, B. A.

Yeh, P.

Appl. Phys. (1)

A. Marrakchi, J.-P. Huignard, P. Günter, “Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals,” Appl. Phys. 24, 131–138 (1981).
[CrossRef]

Appl. Phys. B (2)

H. Kröse, R. Scharfschwerdt, O. F. Schirmer, H. Hesse, “Light-induced charge transport in BaTiO3 via three charge states of rhodium,” Appl. Phys. B 61, 1–7 (1995).
[CrossRef]

U. van Stevendaal, K. Buse, S. Kämper, H. Hesse, E. Krätzig, “Light-induced charge transport processes in photorefractive barium titanate doped with rhodium and iron,” Appl. Phys. B 63, 315–321 (1996).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. Rockwell, “A review of phase-conjugate solid-state lasers,” IEEE J. Quantum Electron. 24, 1124–1140 (1988).
[CrossRef]

H. J. Eichler, A. Haase, R. Menzel, “100-Watt average output power 1.2 diffraction limited beam from pulsed neodymium single-rod amplifier with SBS-phase conjugation,” IEEE J. Quantum Electron. 31, 1265–1269 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. M. Verdiell, H. Rajbenbach, J.-P. Huignard, “Efficient diffraction-limited beam combining of semiconductor laser diode arrays using photorefractive BaTiO3,” IEEE Photonics Technol. Lett. 2, 568–570 (1990).
[CrossRef]

J. Appl. Phys. (1)

Ph. Réfrégier, L. Solymar, H. Rajbenbach, J.-P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (5)

M. Kaczmarek, G. W. Ross, R. W. Eason, M. J. Damzen, R. Ramos-Garcia, M. H. Garrett, “Intensity-dependent absorption and its modelling in infrared sensitive rhodium-doped BaTiO3,” Opt. Commun. 126, 175–184 (1996).
[CrossRef]

C. H. Kwak, S. Y. Park, J. S. Jeong, H. H. Suh, E.-H. Lee, “An analytical solution for large modulation effects in photorefractive two-wave couplings,” Opt. Commun. 105, 353–358 (1994).
[CrossRef]

N. Huot, J. M. C. Jonathan, G. Pauliat, D. Rytz, G. Roosen, “Characterization of a photorefractive rhodium doped barium titanate at 1.06 µm,” Opt. Commun. 135, 133–137 (1997).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in blue BaTiO3,” Opt. Commun. 101, 60–64 (1993).
[CrossRef]

A. Brignon, D. Geffroy, J.-P. Huignard, M. H. Garrett, I. Mnushkina, “Experimental investigations of the photorefractive properties of rhodium doped BaTiO3 at 1.06 µm,” Opt. Commun. 137, 311–316 (1997).
[CrossRef]

Opt. Eng. (1)

Y. Fainman, E. Klancnik, S. H. Lee, “Optimal coherent image amplification by two-wave coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234 (1986).
[CrossRef]

Opt. Lett. (8)

Other (3)

L. Mager, “Correction de fronts d’onde de faisceaux lasers impulsionnels par mélange d’ondes photoréfractif,” Thèse de doctorat en Sciences Physiques (Université de Paris XI, Orsay, France, 1994).

W. R. Christian, I. C. McMichael, “Laser-beam cleanup at 830 nm,” in Nonlinear Optical Beam Manipulation and High Energy Beam Propagation Through the Atmosphere, R. A. Fisher, L. E. Wilson, eds., Proc. SPIE1060, 113–118 (1989).
[CrossRef]

T. W. McNamara, S. G. Conahan, I. Mnushkina, M. H. Garrett, H. P. Jenssen, C. Warde, “Fixing and IR response of doped barium titanate,” in Photorefractive Materials, Effects and Applications, P. Yeh, C. Gu, eds., Vol. CR48 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 1994), pp. 100–120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of photorefractive spatial beam cleanup of a Nd:YAG laser operating at λ = 1064 nm: BS, beamsplitter; M, plane mirror.

Fig. 2
Fig. 2

Theoretical overall efficiency of the photorefractive beam cleanup process as a function of the initial pump-to-signal beam ratio β for various values of the exponential coupling gain ΓL: T = 1%, toc = tS = tP = 1, α = Δα = 0. For these calculations, large modulation effects have been neglected.

Fig. 3
Fig. 3

Experimental setup to measure the efficiency of the two-beam coupling process in Rh:BaTiO3 at λ = 1064 nm: WP, half-wave plate; GP, Glan polarizing beam splitter; M, plane mirror; D, neutral density filter.

Fig. 4
Fig. 4

Overall efficiency of the two-beam coupling process in Rh:BaTiO3 at λ = 1064 nm versus the pump-to-signal beam ratio β for various values of the transmission factor T of the neutral density filter D. For clarity, the data are presented as two separate sets of curves. The points are the experimental data, the solid curves are the theoretical curves calculated from Eq. (5) (assuming negligible large modulation effects), and the dashed curves are the fits calculated from Eq. (10) with af = 1.2. All the curves have been calculated with the following experimental parameters: toc = 0.95, tS = 0.83, tP = 1, α = 0.13 cm-1, Δα = 0.18 cm-1, L = 7 mm, ΓL = 6.5.

Fig. 5
Fig. 5

Schematic diagram of the experimental setup for spatial beam cleanup of a distorted cw Nd:YAG laser operating at λ = 1064 nm: PP, phase plate aberrator; WP, half-wave plate; GP, Glan polarizing beam splitter; M, plane mirror; L, focusing lens.

Fig. 6
Fig. 6

Near-field spatial beam profiles from (left) a CCD camera and (right) a three-dimensional beam profiler: (a) distorted laser beam after the phase plate aberrator (P = 460 mW); (b) clean signal beam after the spatial mode filter (P = 5 mW); (c) amplified signal beam coming from the Rh:BaTiO3 crystal (P = 130 mW).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

IS0=TI01+β,
IP0=βI01+β,
G=ISL with pumpISL without pump=1+β0expΓL-ΔαLβ0+expΓL.
β0=βtPTtS,
=ISLI0=tS2IS0I0G exp-αL,
=TtoctS2 exp-αL-ΔαL1+β×1+βtPTtSexpΓLβtPTtS+expΓL.
ddβ=0,
βopt=TtStPexpΓL-1tPTtS-11/2-1.
dIPdz=-ΓfmmIPISIP+IS,
dISdz=ΓfmmIPISIP+IS,
fm=1af1-exp-afm,
=TtoctS2 exp-αL-ΔαL1+βISL,

Metrics