Abstract

We describe the theoretical treatment of the doubly resonant sum-frequency mixing in an external resonator. The nonlinear conversion efficiency is increased by the resonantly enhanced circulating powers at both wavelengths. The model predicts the circulating powers in the resonator at two input wavelengths: the powers that are reflected off the input coupler and the output power at the sum frequency. Numerical simulation gives the design optimization of the system. The result of the simulation is compared with the result of a continuous-wave 355-nm generation experiment, where 0.66-W of output power was obtained.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
    [CrossRef]
  2. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  3. W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
    [CrossRef]
  4. Z. Y. Ou, S. F. Pereira, E. S. Polzik, H. J. Kimble, “85% efficiency for cw frequency doubling from 1.08 to 0.54 µm,” Opt. Lett. 17, 640–642 (1992).
    [CrossRef] [PubMed]
  5. L. Y. Liu, M. Oka, W. Wiechmann, S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Opt. Lett. 19, 189–191 (1994).
    [CrossRef] [PubMed]
  6. M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
    [CrossRef]
  7. W. P. Risk, W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707–709 (1992).
    [CrossRef] [PubMed]
  8. Y. Kaneda, S. Kubota, “Continuous-wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
    [CrossRef] [PubMed]
  9. Y. Kaneda, S. Kubota, “CW 355 nm generation by doubly-resonant sum-frequency mixing in an external resonator,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 352–355.
  10. C. C. Pohalski, “Efficient resonant harmonic generation of high-power cw lasers,” , 1994 (Ginzton Laboratory, Stanford University, Stanford, Calif.)
  11. R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 301050–1057 (1994).
    [CrossRef]
  12. J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
    [CrossRef]
  13. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  14. M. Oka, S. T. Yang, S. Kubota, “100% conversion efficiency from a resonant external doubler,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 84–88.
  15. Castech-Phoenix (CASIX), “Lithium triborate (LBO) crystal,” product catalog (Fuzhou, Fujian, China).
  16. M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.
  17. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  18. R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
    [CrossRef]
  19. S. T. Yang, “Continuous wave singly resonant optical parametric oscillator,” Ph.D. dissertation, Rep. No. 5116, 1993 (Ginzton Laboratory, Stanford University, Stanford, Calif.).

1995 (1)

1994 (3)

R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 301050–1057 (1994).
[CrossRef]

L. Y. Liu, M. Oka, W. Wiechmann, S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Opt. Lett. 19, 189–191 (1994).
[CrossRef] [PubMed]

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

1992 (2)

1991 (1)

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
[CrossRef]

1988 (1)

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

1987 (1)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Baumert, J.-C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Bjorklund, G. C.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Byer, R. L.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Eckardt, R. C.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
[CrossRef]

Eguchi, N.

M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.

Fan, Y. X.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hayakawa, K.

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Imajo, H.

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

Kaneda, Y.

Y. Kaneda, S. Kubota, “Continuous-wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
[CrossRef] [PubMed]

Y. Kaneda, S. Kubota, “CW 355 nm generation by doubly-resonant sum-frequency mixing in an external resonator,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 352–355.

Kimble, H. J.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kozlovsky, W. J.

W. P. Risk, W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707–709 (1992).
[CrossRef] [PubMed]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Kubota, S.

Y. Kaneda, S. Kubota, “Continuous-wave 355-nm laser source based on doubly resonant sum-frequency mixing in an external resonator,” Opt. Lett. 20, 2204–2206 (1995).
[CrossRef] [PubMed]

L. Y. Liu, M. Oka, W. Wiechmann, S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Opt. Lett. 19, 189–191 (1994).
[CrossRef] [PubMed]

Y. Kaneda, S. Kubota, “CW 355 nm generation by doubly-resonant sum-frequency mixing in an external resonator,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 352–355.

M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.

M. Oka, S. T. Yang, S. Kubota, “100% conversion efficiency from a resonant external doubler,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 84–88.

Lenth, W.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Liu, L. Y.

L. Y. Liu, M. Oka, W. Wiechmann, S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Opt. Lett. 19, 189–191 (1994).
[CrossRef] [PubMed]

M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.

Masuda, H.

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Myers, J. F.

R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 301050–1057 (1994).
[CrossRef]

Nabors, C. D.

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

Ohmukai, R.

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

Oka, M.

L. Y. Liu, M. Oka, W. Wiechmann, S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Opt. Lett. 19, 189–191 (1994).
[CrossRef] [PubMed]

M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.

M. Oka, S. T. Yang, S. Kubota, “100% conversion efficiency from a resonant external doubler,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 84–88.

Ou, Z. Y.

Pereira, S. F.

Pohalski, C. C.

C. C. Pohalski, “Efficient resonant harmonic generation of high-power cw lasers,” , 1994 (Ginzton Laboratory, Stanford University, Stanford, Calif.)

Polzik, E. S.

Risk, W. P.

W. P. Risk, W. J. Kozlovsky, “Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator,” Opt. Lett. 17, 707–709 (1992).
[CrossRef] [PubMed]

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Schellenberg, F. M.

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

Scheps, R.

R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 301050–1057 (1994).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Urabe, S.

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Watanabe, M.

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

Wiechmann, W.

L. Y. Liu, M. Oka, W. Wiechmann, S. Kubota, “Longitudinally diode-pumped continuous-wave 3.5-W green laser,” Opt. Lett. 19, 189–191 (1994).
[CrossRef] [PubMed]

M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.

Yang, S. T.

M. Oka, S. T. Yang, S. Kubota, “100% conversion efficiency from a resonant external doubler,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 84–88.

S. T. Yang, “Continuous wave singly resonant optical parametric oscillator,” Ph.D. dissertation, Rep. No. 5116, 1993 (Ginzton Laboratory, Stanford University, Stanford, Calif.).

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

J.-C. Baumert, F. M. Schellenberg, W. Lenth, W. P. Risk, G. C. Bjorklund, “Generation of blue cw coherent radiation by sum frequency mixing in KTiOPO4,” Appl. Phys. Lett. 51, 2192–2194 (1987).
[CrossRef]

IEEE J. Quantum Electron. (4)

R. C. Eckardt, H. Masuda, Y. X. Fan, R. L. Byer, “Absolute and relative nonlinear optical coefficients of KDP, KD*P, BaB2O4, LiIO3, MgO:LiNbO3, and KTP measured by phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 26, 922–933 (1991).
[CrossRef]

R. Scheps, J. F. Myers, “Dual-wavelength coupled-cavity Ti:sapphire laser with active mirror for enhanced red operation and efficient intracavity sum frequency generation at 459 nm,” IEEE J. Quantum Electron. 301050–1057 (1994).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

W. J. Kozlovsky, C. D. Nabors, R. L. Byer, “Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities,” IEEE J. Quantum Electron. 24, 913–919 (1988).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Jpn. J. Appl. Phys. Part 1 (1)

M. Watanabe, K. Hayakawa, H. Imajo, R. Ohmukai, S. Urabe, “Sum-frequency generation near 194 nm with an external cavity by simultaneous enhancement of frequency-stabilized fundamental lasers,” Jpn. J. Appl. Phys. Part 1 33, 1599–1602 (1994).
[CrossRef]

Opt. Lett. (4)

Other (7)

Y. Kaneda, S. Kubota, “CW 355 nm generation by doubly-resonant sum-frequency mixing in an external resonator,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 352–355.

C. C. Pohalski, “Efficient resonant harmonic generation of high-power cw lasers,” , 1994 (Ginzton Laboratory, Stanford University, Stanford, Calif.)

S. T. Yang, “Continuous wave singly resonant optical parametric oscillator,” Ph.D. dissertation, Rep. No. 5116, 1993 (Ginzton Laboratory, Stanford University, Stanford, Calif.).

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

M. Oka, S. T. Yang, S. Kubota, “100% conversion efficiency from a resonant external doubler,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 84–88.

Castech-Phoenix (CASIX), “Lithium triborate (LBO) crystal,” product catalog (Fuzhou, Fujian, China).

M. Oka, N. Eguchi, L. Y. Liu, W. Wiechmann, S. Kubota, “1-W cw 266 nm radiation from an external resonant cavity using a novel voice-coil-motor,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), paper CThM1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Conceptual model of the DRSFM. Pin,n, powers incident on the resonator at corresponding frequencies ωn; Prefl,n, reflected powers from the resonator; Pc,n, circulating powers in the resonator; P3, generated power at sum frequency at ω3 = ω1 + ω2; NLC, nonlinear crystal.

Fig. 2
Fig. 2

Contour and plots of the predicted output power at 355 nm, as a function of input coupling at two input wavelengths. Input powers are (a) 0.5 W at 1064 nm and 0.8 W at 532 nm, (b) 0.2 W at both wavelengths, (c) 0.5 W at 1064 nm and 0.2 W at 532 nm. γSFM = 1.0 × 10-4 W-1, δ1 = 0.2%, and δ2 = 0.3% for all simulations.

Fig. 3
Fig. 3

Simulation plot of the 355-nm output power as a function of nonlinear coupling efficiency, with all other parameters fixed. The output saturates above γSFM > 1.0 × 10-4 W-1. Input powers are 0.5 W at 1064 nm and 0.8 W at 532 nm. Passive losses are δ1 = 0.2% and δ2 = 0.3%. Reflectivities of the input coupler are Ri,1 = 99.2% and Ri,2 = 99.0%.

Fig. 4
Fig. 4

Experimental setup of 532-nm single-frequency laser source. NPRO, non-planar ring oscillator.

Fig. 5
Fig. 5

Temperature tuning characteristic of the LBO crystal in the resonant cavity.

Fig. 6
Fig. 6

Reflected fundamental power from the doubling resonator.

Fig. 7
Fig. 7

Experimental setup for 355-nm generation by DRSFM. The shaded area is the green laser source previously described.

Fig. 8
Fig. 8

Sum-frequency output power at 355 nm with varied 532 nm input power and fixed 1064 nm power. Dots represent the measured data; the solid curve represents the prediction from the theory.

Fig. 9
Fig. 9

Reflected 1064-nm power with double resonance at different 532-nm incident powers. Higher circulating powers yield larger nonlinear conversion, approaching the impedance-matching condition.

Fig. 10
Fig. 10

Reflected 532-nm power with and without 1064-nm resonating. Without the 1064-nm resonance, the mixer behaves as a simple Fabry–Perot device.

Fig. 11
Fig. 11

Time trace of the reflection at each wavelength: reflection at 1064 nm (upper trace) and reflection at 532 nm (lower trace). On the right-hand side, the resonator is locked to 532 nm, maintaining the 532-nm resonance. The reflection at 532 nm is reduced when 1064-nm frequency is at the resonance because of better impedance matching.

Fig. 12
Fig. 12

Similar measurement as that of Fig. 11 but different resonator condition. The passive loss of the resonator is larger than the transmission of the input coupler, giving an undercoupled condition. Increase in the reflection at 532 nm at the 1064-nm resonance is observed.

Fig. 13
Fig. 13

Same as Figs. 11 and 12, with a slightly undercoupled condition. The reflection at 532 nm decreases when 1064-nm frequency approaches the resonance and starts building up in the resonator. The reflection at 532 nm turns to slight undercoupling when the 1064 nm fully builds up in the resonator. However, the reflection at double resonance is still lower than the singly resonant case.

Tables (1)

Tables Icon

Table 1 Result of Loss Measurementa

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P3=γSFMPc,1Pc,2.
δ1NL=ω1ω1+ω2γSFMPc,2,
δ2NL=ω2ω1+ω2γSFMPc,1.
P3=γSHGPtotal2=γSFMP12=γSFM4Ptotal2
δNL=γSHGPtotal=12γSFMP1=γSFM4Ptotal,
Rm,1=1-δ1+δ1NL,
Rm,2=1-δ2+δ2NL
E1=Pc,1Pi,1=1-Ri,11-Ri,1Rm,11/22,
E2=Pc,2Pi,2=1-Ri,21-Ri,2Rm,21/22,
Pinx, y=Pinm,nκmn·Imnx, y,
Pc,1Pi,1=1-Ri,11-Ri,11-δ1+ω1/ω1+ω2γSFMPc,21/22,
Pc,2Pi,2=1-Ri,21-Ri,21-δ2+ω2/ω1+ω2γSFMPc,11/22.
Rr,1=Prefl,1Pi,1=Ri,1-Rm,11-Ri,1Rm,1=Ri,1-1-δ1+ω1ω1+ω2γSFMPc,21/21-Ri,11-δ1+ω1ω1+ω2γSFMPc,21/2
Rr,2=Prefl,2Pi,2=Ri,2-Rm,21-Ri,2Rm,2=Ri,2-1-δ2+ω2ω1+ω2γSFMPc,11/21-Ri,21-δ2+ω2ω1+ω2γSFMPc,11/2,
Rr,n=κ00,nRr,n+1-κ00,n,
En=11-Ri,n1Ti,n,
γSHGT=γ0 sinc2π140.5-T4.2,

Metrics