Abstract

We report on a new optical interconnect architecture for three-dimensional, multiple electro-optic gratings with LiNbO3 used in conjunction with substrate guided waves. First the operating mechanism of the system is studied in detail, and the momentum mismatch in the operating process of the system is also demonstrated. We then derive a new method for calculating coupling efficiency by introducing a compensation for the mismatch. This theoretical research allows the new optical interconnect architecture to provide a higher design accuracy and an optimized coupling efficiency, even though it is under the case of momentum mismatch. We achieve this result by introducing a substrate guided wave with 45° bouncing angle and 100-V applied voltage. The successful design and its theoretical analysis will be helpful for research on the grating coupler.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription