Abstract

Two-dimensional images of the Maker fringe have been successfully obtained with a second-harmonic generation microscope that we recently constructed. Compared with conventional Maker fringe methods, our experimental technique offers several advantages of direct and rapid calculation of coherence lengths of optical nonlinear crystals. In addition, owing to the sensitivity of second-harmonic waves to orientational inhomogeneities, two-dimensional images built by second-harmonic waves make it possible to observe and evaluate the poling state of ferroelectric single domains or inhomogeneities in a specimen.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
    [CrossRef]
  2. J. Jerphagnon, S. K. Kurtz, “Maker fringe: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  3. G. D. Boyd, H. Kasper, J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
    [CrossRef]
  4. Y. Uesu, S. Kurimura, Y. Yamamoto, “Optical second harmonic images of a 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
    [CrossRef]
  5. Y. Uesu, S. Kurimura, Y. Yamamoto, “New nonlinear optical microscope and its application to the observation of ferroelectric domain structure,” Ferroelectrics 169, 249–257 (1995).
    [CrossRef]
  6. D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
    [CrossRef]
  7. K. Nassau, H. J. Levinstein, G. M. Loiacono, “Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 983–988 (1966).
    [CrossRef]

1995 (2)

Y. Uesu, S. Kurimura, Y. Yamamoto, “Optical second harmonic images of a 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Y. Uesu, S. Kurimura, Y. Yamamoto, “New nonlinear optical microscope and its application to the observation of ferroelectric domain structure,” Ferroelectrics 169, 249–257 (1995).
[CrossRef]

1974 (1)

D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

1971 (1)

G. D. Boyd, H. Kasper, J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

1970 (1)

J. Jerphagnon, S. K. Kurtz, “Maker fringe: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

1966 (1)

K. Nassau, H. J. Levinstein, G. M. Loiacono, “Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 983–988 (1966).
[CrossRef]

1962 (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. Kasper, J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon, S. K. Kurtz, “Maker fringe: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Kasper, H.

G. D. Boyd, H. Kasper, J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Kurimura, S.

Y. Uesu, S. Kurimura, Y. Yamamoto, “Optical second harmonic images of a 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Y. Uesu, S. Kurimura, Y. Yamamoto, “New nonlinear optical microscope and its application to the observation of ferroelectric domain structure,” Ferroelectrics 169, 249–257 (1995).
[CrossRef]

Kurtz, S. K.

J. Jerphagnon, S. K. Kurtz, “Maker fringe: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Levinstein, H. J.

K. Nassau, H. J. Levinstein, G. M. Loiacono, “Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 983–988 (1966).
[CrossRef]

Loiacono, G. M.

K. Nassau, H. J. Levinstein, G. M. Loiacono, “Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 983–988 (1966).
[CrossRef]

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Mcfee, J. H.

G. D. Boyd, H. Kasper, J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

Mikulyak, R. M.

D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

Nassau, K.

K. Nassau, H. J. Levinstein, G. M. Loiacono, “Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 983–988 (1966).
[CrossRef]

Nelson, D. F.

D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Uesu, Y.

Y. Uesu, S. Kurimura, Y. Yamamoto, “Optical second harmonic images of a 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Y. Uesu, S. Kurimura, Y. Yamamoto, “New nonlinear optical microscope and its application to the observation of ferroelectric domain structure,” Ferroelectrics 169, 249–257 (1995).
[CrossRef]

Yamamoto, Y.

Y. Uesu, S. Kurimura, Y. Yamamoto, “New nonlinear optical microscope and its application to the observation of ferroelectric domain structure,” Ferroelectrics 169, 249–257 (1995).
[CrossRef]

Y. Uesu, S. Kurimura, Y. Yamamoto, “Optical second harmonic images of a 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Uesu, S. Kurimura, Y. Yamamoto, “Optical second harmonic images of a 90° domain structure in BaTiO3 and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Ferroelectrics (1)

Y. Uesu, S. Kurimura, Y. Yamamoto, “New nonlinear optical microscope and its application to the observation of ferroelectric domain structure,” Ferroelectrics 169, 249–257 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. D. Boyd, H. Kasper, J. H. Mcfee, “Linear and nonlinear optical properties of AgGaS2, CuGaS2, and CuInS2, and theory of the wedge technique for the measurement of nonlinear coefficients,” IEEE J. Quantum Electron. QE-7, 563–573 (1971).
[CrossRef]

J. Appl. Phys. (2)

J. Jerphagnon, S. K. Kurtz, “Maker fringe: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974).
[CrossRef]

J. Phys. Chem. Solids (1)

K. Nassau, H. J. Levinstein, G. M. Loiacono, “Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids 27, 983–988 (1966).
[CrossRef]

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of the SHG microscope.

Fig. 2
Fig. 2

Two-dimensional images of the Maker fringe of y-cut, wedge-shaped LiNbO3 at room temperature that is due to (a) a d 33 component and (b) a d 31 component. (c) Schematic drawing of the wedge-shaped specimen. (d) Photograph of the same specimen taken by an ordinary optical microscope.

Fig. 3
Fig. 3

(a)–(c) Temperature dependences of the Maker fringe that are due to d 31. (d) Schematic drawing of the wedge-shaped specimen.

Fig. 4
Fig. 4

Photographs of imperfectly poled, wedge-shaped, V-doped LiNbO3: (a) Maker fringe that is due to d 33 at room temperature; the dark regions shown by arrows were caused by cracks in the specimen; (b) photograph taken by an ordinary optical microscope; (c) etched c faces taken by an ordinary optical microscope; (d) schematic drawing of the wedge-shaped specimen. In (a), an internal domain that is shown in (c) could not be observed. The reason can be attributed to the fact that the domain locates only near the z surface and the SH waves from the domain contributed little to the second-harmonic image.

Metrics