Abstract

We report on the experimental results of a diode-pumped, intracavity-doubled cw Nd:YAG laser, pumped by a 10-W fiber-coupled semiconductor laser at 808 nm and emitting as much as 600 mW in a stable single longitudinal mode and TEM00 spatial mode. We discuss the main issues of the resonator design and the optimization of the intracavity second harmonic conversion by interpreting our results using simple models. Improvements for the current project are also discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Marshall, “Will solid-state lasers get the green light?” Laser Focus World87–96 (February1995).
  2. R. G. Smith, “Theory of intracavity second-harmonic generation,” IEEE J. Quantum Electron. QE-6, 215–223 (1970).
    [CrossRef]
  3. H. Hemmati, J. R. Lesh, “3.5-W Q-switched 532-nm Nd:YAG laser pumped with fiber-coupled diode lasers,” Opt. Lett. 19, 1322–1324 (1994).
    [CrossRef] [PubMed]
  4. W. A. Clarkson, K. I. Martin, D. C. Hanna, “High power single-frequency operation and efficient intracavity frequency doubling of a Nd:YAG ring laser end-pumped by a 20-W diode bar,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CMD8.
  5. A. E. Siegman, New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
    [CrossRef]
  6. M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
    [CrossRef]
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  8. V. Kushawaha, Y. Chen, “Diode end-pumped high-efficiency Nd:YAG laser,” Appl. Phys. B 59, 659–661 (1994).
    [CrossRef]
  9. A. A. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
    [CrossRef]
  10. J.-P. Meyn, G. Huber, “Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser,” Opt. Lett. 19, 1436–1438 (1994).
    [CrossRef] [PubMed]
  11. D. Findlay, R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
    [CrossRef]
  12. W. Koechner, Solid-State Laser Engineering3rd ed. (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  13. T. Baer, “Large amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3, 1175–1180 (1986).
    [CrossRef]
  14. C. J. Flood, D. R. Walker, H. M. van Driel, “Effect of spatial hole burning in a mode-locked diode end-pumped Nd:YAG laser,” Opt. Lett. 20, 58–60 (1995).
    [CrossRef] [PubMed]
  15. H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
    [CrossRef]
  16. A. Yariv, Quantum Electronics3rd ed. (Wiley, New York, 1988).
  17. Technical Brochure (Casix, Inc., Fujian, China, 1995).
  18. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3579–3639 (1968).
    [CrossRef]

1995 (2)

1994 (3)

1992 (1)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

1990 (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

1989 (1)

A. A. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[CrossRef]

1986 (1)

1970 (1)

R. G. Smith, “Theory of intracavity second-harmonic generation,” IEEE J. Quantum Electron. QE-6, 215–223 (1970).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3579–3639 (1968).
[CrossRef]

1966 (1)

D. Findlay, R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Alfrey, A. A.

A. A. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[CrossRef]

Baer, T.

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3579–3639 (1968).
[CrossRef]

Chen, Y.

V. Kushawaha, Y. Chen, “Diode end-pumped high-efficiency Nd:YAG laser,” Appl. Phys. B 59, 659–661 (1994).
[CrossRef]

Clarkson, W. A.

W. A. Clarkson, K. I. Martin, D. C. Hanna, “High power single-frequency operation and efficient intracavity frequency doubling of a Nd:YAG ring laser end-pumped by a 20-W diode bar,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CMD8.

Clay, R. A.

D. Findlay, R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Fields, R. A.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Fincher, C. L.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Findlay, D.

D. Findlay, R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Flood, C. J.

Hanna, D. C.

W. A. Clarkson, K. I. Martin, D. C. Hanna, “High power single-frequency operation and efficient intracavity frequency doubling of a Nd:YAG ring laser end-pumped by a 20-W diode bar,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CMD8.

Hemmati, H.

Huber, G.

Innocenzi, M. E.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Kazamura, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3579–3639 (1968).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering3rd ed. (Springer-Verlag, Berlin, 1988).
[CrossRef]

Kume, M.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Kushawaha, V.

V. Kushawaha, Y. Chen, “Diode end-pumped high-efficiency Nd:YAG laser,” Appl. Phys. B 59, 659–661 (1994).
[CrossRef]

Lesh, J. R.

Marshall, L.

L. Marshall, “Will solid-state lasers get the green light?” Laser Focus World87–96 (February1995).

Martin, K. I.

W. A. Clarkson, K. I. Martin, D. C. Hanna, “High power single-frequency operation and efficient intracavity frequency doubling of a Nd:YAG ring laser end-pumped by a 20-W diode bar,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CMD8.

Meyn, J.-P.

Nagai, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Ohta, I.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Shimizu, H.

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

A. E. Siegman, New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

Smith, R. G.

R. G. Smith, “Theory of intracavity second-harmonic generation,” IEEE J. Quantum Electron. QE-6, 215–223 (1970).
[CrossRef]

van Driel, H. M.

Walker, D. R.

Yariv, A.

A. Yariv, Quantum Electronics3rd ed. (Wiley, New York, 1988).

Yura, H. T.

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

Appl. Phys. B (1)

V. Kushawaha, Y. Chen, “Diode end-pumped high-efficiency Nd:YAG laser,” Appl. Phys. B 59, 659–661 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

M. E. Innocenzi, H. T. Yura, C. L. Fincher, R. A. Fields, “Thermal modeling of a continuous-wave end-pumped solid-state laser,” Appl. Phys. Lett. 56, 1831–1833 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Nagai, M. Kume, I. Ohta, H. Shimizu, M. Kazamura, “Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron. 28, 1164–1167 (1992).
[CrossRef]

A. A. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[CrossRef]

R. G. Smith, “Theory of intracavity second-harmonic generation,” IEEE J. Quantum Electron. QE-6, 215–223 (1970).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3579–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Focus World (1)

L. Marshall, “Will solid-state lasers get the green light?” Laser Focus World87–96 (February1995).

Opt. Lett. (3)

Phys. Lett. (1)

D. Findlay, R. A. Clay, “The measurement of internal losses in a 4-level laser,” Phys. Lett. 20, 277–278 (1966).
[CrossRef]

Other (6)

W. Koechner, Solid-State Laser Engineering3rd ed. (Springer-Verlag, Berlin, 1988).
[CrossRef]

W. A. Clarkson, K. I. Martin, D. C. Hanna, “High power single-frequency operation and efficient intracavity frequency doubling of a Nd:YAG ring laser end-pumped by a 20-W diode bar,” in Conference on Lasers and Electro-Optics, Vol. 15 of OSA 1995 Technical Digest Series (Optical Society of America, Washington, D.C., 1995), paper CMD8.

A. E. Siegman, New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed., Proc. SPIE1224, 2–14 (1990).
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

A. Yariv, Quantum Electronics3rd ed. (Wiley, New York, 1988).

Technical Brochure (Casix, Inc., Fujian, China, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Least-squares fit to determine the thermal lens as a function of the absorbed pump power, from the pump power dependence of the fundamental mode radius at the output coupler of the flat–flat resonator.

Fig. 2
Fig. 2

Setup of the intracavity-doubled Nd:YAG laser: M1, AR coated at 808 nm and HR at 1064 nm; M2, HR at 1064 nm and high transmittance at 532 nm; M3, HR at 1064 nm and 532 nm; B, 1-mm-thick Brewster glass plate; L, 57-mm focal-length lens, AR coated at 532 and 1064 nm. The Brewster plate transmits the s -type circulating polarization (perpendicular to the plane of the figure).

Fig. 3
Fig. 3

Results of the numerical model: (a) length of the collimated arm D = 15 cm, (b) D = 25 cm, (c) D = 35 cm. w and w 0 are the mode radii at M1 and M 3, respectively, as a function of the thermal lens length f th.

Fig. 4
Fig. 4

Output power at 1064 nm versus input power. The laser was operated in a single transverse mode at each power level. The slope efficiency is η S = 30%. Also reported for two pump power values is the depolarization ratio δ = P p / P s that was obtained by measuring the p - and s -polarized output powers, respectively.

Fig. 5
Fig. 5

Output power at 532 nm in the SLM and in the TEM00 spatial mode. The experimental data were compared with a simple model to outline the role of linear losses L and the effective nonlinear parameter κ′: curve a, L = 2.9%, l = 8mm (best fit to experiment to 6-W pump power); curve b, L = 2.3%, l = 5 mm; curve c, L = 1.3%, l = 5 mm; curve d, L = 1.9%, l = 8 mm; curve e, L = 2.9%, l = 8 mm, spot area in KTP doubled with respect to curve a; curve f, L = 2.9%, l = 8 mm, spot area in KTP halved with respect to curve a. For each case, the walk-off coefficientη a was recalculated independently.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

woc=WocM2,
fth=cPabs,
woc=λlcπfthlc-11/4.
Wpz2=Wp21+λp2 z2Mp4π2Wp4.
P2ω=πw28κ Is2 -κ+LIs+κ+LIs2+4 κIs2KcPi-L1/22
κ=w2w02κl2βηa,
κ=4π2λω2μ0/ε01/2deff2n3  2.1×10-8W-1,
ηa=11+ρl/πw0.

Metrics