Abstract

We present a new form of loop mirror (to be realized with all-fiber or integrated optics technology) that can produce narrow-band reflections and could find an application in single-frequency fiber lasers, allowing for a standing-wave design with a long doped section and eliminating the need for a Faraday isolator or a fiber grating. We discuss the main features of such a loop mirror and present experimental results that agree well with the theory.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Morkel, G. J. Cowle, D. N. Payne, “Travelling-wave erbium fibre ring laser with 60 kHz linewidth,” Electron. Lett. 26, 632–634 (1990).
    [Crossref]
  2. H. Sabert, R. Ulrich, “Spatial hole burning in Nd3+ -fiber lasers suppressed by push-pull phase modulation,” Appl. Phys. Lett. 58, 2323–2325 (1991).
    [Crossref]
  3. I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
    [Crossref]
  4. I. D. Miller, D. B. Mortimore, P. Urquhart, B. J. Ainslie, S. P. Craig, C. A. Millar, D. B. Payne, “A Nd3+-doped cw fiber laser using all-fiber reflectors,” Appl. Opt. 26, 2197–2201 (1987).
    [Crossref] [PubMed]
  5. L. F. Stokes, M. Chodorow, H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982).
    [Crossref] [PubMed]
  6. T. A. Birks, “Twist induced tuning in tapered fiber coupler,” Appl. Opt. 28, 4226–4233 (1989).
    [Crossref] [PubMed]

1991 (1)

H. Sabert, R. Ulrich, “Spatial hole burning in Nd3+ -fiber lasers suppressed by push-pull phase modulation,” Appl. Phys. Lett. 58, 2323–2325 (1991).
[Crossref]

1990 (1)

P. R. Morkel, G. J. Cowle, D. N. Payne, “Travelling-wave erbium fibre ring laser with 60 kHz linewidth,” Electron. Lett. 26, 632–634 (1990).
[Crossref]

1989 (1)

1988 (1)

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

1987 (1)

1982 (1)

Ainslie, B. J.

Birks, T. A.

Chodorow, M.

Cowle, G. J.

P. R. Morkel, G. J. Cowle, D. N. Payne, “Travelling-wave erbium fibre ring laser with 60 kHz linewidth,” Electron. Lett. 26, 632–634 (1990).
[Crossref]

Craig, S. P.

Jauncey, I. M.

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

Millar, C. A.

Miller, I. D.

Morkel, P. R.

P. R. Morkel, G. J. Cowle, D. N. Payne, “Travelling-wave erbium fibre ring laser with 60 kHz linewidth,” Electron. Lett. 26, 632–634 (1990).
[Crossref]

Mortimore, D. B.

Payne, D. B.

Payne, D. N.

P. R. Morkel, G. J. Cowle, D. N. Payne, “Travelling-wave erbium fibre ring laser with 60 kHz linewidth,” Electron. Lett. 26, 632–634 (1990).
[Crossref]

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

Reekie, L.

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

Rowe, C. J.

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

Sabert, H.

H. Sabert, R. Ulrich, “Spatial hole burning in Nd3+ -fiber lasers suppressed by push-pull phase modulation,” Appl. Phys. Lett. 58, 2323–2325 (1991).
[Crossref]

Shaw, H. J.

Stokes, L. F.

Townsend, J. E.

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

Ulrich, R.

H. Sabert, R. Ulrich, “Spatial hole burning in Nd3+ -fiber lasers suppressed by push-pull phase modulation,” Appl. Phys. Lett. 58, 2323–2325 (1991).
[Crossref]

Urquhart, P.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Sabert, R. Ulrich, “Spatial hole burning in Nd3+ -fiber lasers suppressed by push-pull phase modulation,” Appl. Phys. Lett. 58, 2323–2325 (1991).
[Crossref]

Electron. Lett. (2)

I. M. Jauncey, L. Reekie, J. E. Townsend, D. N. Payne, C. J. Rowe, “Single longitudinal mode operation of a Nd3+ -doped fibre laser,” Electron. Lett. 24, 24–26 (1988).
[Crossref]

P. R. Morkel, G. J. Cowle, D. N. Payne, “Travelling-wave erbium fibre ring laser with 60 kHz linewidth,” Electron. Lett. 26, 632–634 (1990).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Different configurations of fiber loops: a, antiresonant loop mirror; b, resonant loop without backreflection; c, new configuration, i.e., resonant ring with reflecting element R. The rectangular boxes represent directional couplers.

Fig. 2
Fig. 2

Our model for the fiber loop. The counterpropagating beams are drawn with some spatial separation for the sake of clarity.

Fig. 3
Fig. 3

Power reflection of a loop versus round-trip phase δ for l = 0.01, C = 0.2, and various values of R: 0.2% (lowest peak), 0.5%, 1%, 2%, 5%, and 10%.

Fig. 4
Fig. 4

Measured transmission and reflection of a fiber loop when the frequency of the input beam was scanned.

Fig. 5
Fig. 5

Double peak for both polarization modes in the transmission signal, when the coupling was set to low values.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ=1-C1-R1-l,
Ec-=REc++ρexpiδEc-.
Ec+=CEin+ρ1-R1/2 expiδ1-REc+-REc- ρ1-R1/2 expiδ.
Ec+=C1-ρexpiδ+Rρ exp2iδ/1-R1-ρexpiδEin
Etrans=1-C-C×1-R-ρ/1-R1/2R/exp-iδ-ρ1-ρexpiδ+Rρ exp2iδ/1-R1-ρ×ρ1-C1-R1/2 expiδEin,
Erefl=CR1-ρexpiδ×11-ρexp iδ+Rρ exp2iδ/1-R1-ρexpiδEin.
Erefl  CRR+C2/4 Ein,
R=C2/4

Metrics