Abstract

A distortion-invariant joint transform correlator based on the concepts of the fringe-adjusted joint transform correlator and the synthetic discriminant function is presented. Computer-simulation results show that the proposed joint transform correlator is distortion-invariant for the target image from the training set and produces sharper correlation peaks and lower sidelobes compared with the classical joint transform correlator.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Weaver, J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1246–1249 (1966).
    [CrossRef]
  2. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  3. F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
    [CrossRef]
  4. F. T. S. Yu, S. Jutamulia, T. W. Lin, D. A. Gregory, “Adaptive real-time pattern recognition using a liquid crystal TV based joint transform correlator,” Appl. Opt. 26, 1370–1372 (1988).
    [CrossRef]
  5. B. Javidi, C. Kuo, “Joint transform image correlation using a binary spatial light modulator at the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
    [CrossRef] [PubMed]
  6. M. S. Alam, M. A. Karim, “Improved correlation discrimination in a multiobject bipolar joint transform correlator,” Opt. Laser Technol. 24, 45–50 (1992).
    [CrossRef]
  7. Q. Tang, B. Javidi, “Multiple-object detection with a chirp-encoded joint transform correlator,” Appl. Opt. 32, 4344–4350 (1993).
    [CrossRef]
  8. M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3216 (1995).
    [CrossRef]
  9. B. Javidi, “Synthetic discriminant function-based binary nonlinear optical correlator,” Appl. Opt. 28, 2490–2493 (1989).
    [CrossRef] [PubMed]
  10. C. F. Hester, D. Casasent, “Multivariant technique for multiclass pattern recognition,” Appl. Opt. 19, 1758–1761 (1980).
    [CrossRef] [PubMed]
  11. D. Casasent, “Unified synthetic discriminant function computational formulation,” Appl. Opt. 23, 1620–1627 (1984).
    [CrossRef] [PubMed]
  12. D. Casasent, W.-T. Chang, “Correlation synthetic discriminant functions,” Appl. Opt. 25, 2343–2350 (1986).
    [CrossRef] [PubMed]
  13. Z. Bahri, B. V. K. Vijaya Kumar, “Generalized synthetic discriminant functions,” J. Opt. Soc. Am. A 5, 562–571 (1988).
    [CrossRef]
  14. D. Jared, D. Ennis, “Inclusion of filter modulation in the synthetic discriminant function construction,” Appl. Opt. 28, 232–239 (1989).
    [CrossRef] [PubMed]
  15. M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
    [CrossRef]
  16. M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint transform optical correlator,” Micro. Opt. Technol. Lett. 4, 103–106 (1991).
    [CrossRef]
  17. G. F. Schils, D. W. Sweeney, “Iterative technique for the synthesis of optical correlator filters,” J. Opt. Soc. Am. A 3, 1433–1442 (1986).
    [CrossRef]

1995 (1)

M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3216 (1995).
[CrossRef]

1994 (1)

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

1993 (1)

1992 (1)

M. S. Alam, M. A. Karim, “Improved correlation discrimination in a multiobject bipolar joint transform correlator,” Opt. Laser Technol. 24, 45–50 (1992).
[CrossRef]

1991 (1)

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint transform optical correlator,” Micro. Opt. Technol. Lett. 4, 103–106 (1991).
[CrossRef]

1989 (2)

1988 (3)

1986 (2)

1984 (2)

D. Casasent, “Unified synthetic discriminant function computational formulation,” Appl. Opt. 23, 1620–1627 (1984).
[CrossRef] [PubMed]

F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

1980 (1)

1966 (1)

1964 (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Alam, M. S.

M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3216 (1995).
[CrossRef]

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, M. A. Karim, “Improved correlation discrimination in a multiobject bipolar joint transform correlator,” Opt. Laser Technol. 24, 45–50 (1992).
[CrossRef]

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint transform optical correlator,” Micro. Opt. Technol. Lett. 4, 103–106 (1991).
[CrossRef]

Awwal, A. A. S.

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint transform optical correlator,” Micro. Opt. Technol. Lett. 4, 103–106 (1991).
[CrossRef]

Bahri, Z.

Casasent, D.

Chang, W.-T.

Ennis, D.

Goodman, J. W.

Gregory, D. A.

Hester, C. F.

Jared, D.

Javidi, B.

Jutamulia, S.

Karim, M. A.

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, M. A. Karim, “Improved correlation discrimination in a multiobject bipolar joint transform correlator,” Opt. Laser Technol. 24, 45–50 (1992).
[CrossRef]

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint transform optical correlator,” Micro. Opt. Technol. Lett. 4, 103–106 (1991).
[CrossRef]

Kuo, C.

Lin, T. W.

Lu, X. J.

F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

Schils, G. F.

Sweeney, D. W.

Tang, Q.

VanderLugt, A.

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Vijaya Kumar, B. V. K.

Weaver, C. S.

Yu, F. T. S.

Appl. Opt. (9)

IEEE Trans. Inf. Theory (1)

A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

J. Opt. Soc. Am. A (2)

Micro. Opt. Technol. Lett. (1)

M. S. Alam, A. A. S. Awwal, M. A. Karim, “Improved correlation discrimination using joint transform optical correlator,” Micro. Opt. Technol. Lett. 4, 103–106 (1991).
[CrossRef]

Opt. Commun. (1)

F. T. S. Yu, X. J. Lu, “A real-time programmable joint transform correlator,” Opt. Commun. 52, 10–16 (1984).
[CrossRef]

Opt. Eng. (2)

M. S. Alam, M. A. Karim, “Multiple target detection using a modified fringe-adjusted joint transform correlator,” Opt. Eng. 33, 1610–1617 (1994).
[CrossRef]

M. S. Alam, “Fractional power fringe-adjusted joint transform correlation,” Opt. Eng. 34, 3208–3216 (1995).
[CrossRef]

Opt. Laser Technol. (1)

M. S. Alam, M. A. Karim, “Improved correlation discrimination in a multiobject bipolar joint transform correlator,” Opt. Laser Technol. 24, 45–50 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Real-time fringe-adjusted JTC architecture. BS, beam splitter.

Fig. 2
Fig. 2

Binary image F with scaled factors (from left to right) 1, 1.6, and 2.

Fig. 3
Fig. 3

Gray-level tank images with scaled factors (from left to right) 1, 1.6, and 2.

Fig. 4
Fig. 4

Correlation intensity outputs by use of the classical JTC for the binary image F when the scale factor is (a) 1, (b) 1.6, and (c) 2.

Fig. 5
Fig. 5

Correlation intensity outputs by use of the SDF-based fringe-adjusted JTC for the binary image F when the scale factor is (a) 1, (b) 1.6, and (c) 2.

Fig. 6
Fig. 6

Correlation intensity outputs of the classical JTC for the gray-level tank image when the scale factor is (a) 1, (b) 1.6, and (c) 2.

Fig. 7
Fig. 7

Correlation intensity outputs of the SDF-based fringe-adjusted JTC for the gray-level tank image when the scale factor is (a) 1, (b) 1.6, and (c) 2.

Tables (2)

Tables Icon

Table 1 Correlation Peaks for the Binary Training Images of the Letter F

Tables Icon

Table 2 Correlation Peaks for the Gray-Level Training Images of a Tank

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

fx, y=rx, y+y0+sx, y-y0.
 Fu, v=Ru, vexpjvy0+Su, vexp-jvy0,
Fu, v2=Ru, v2+Su, v2+Ru, v S*u, vexpj2vy0+R*u, v Su, vexp-j2vy0.
Hu, v=Bu, vAu, v+Ru, v2,
Gu, v=Hu, v·Fu, v2.
Gu, v=2+2 cos2vy0.
Pu, v=Fu, v2-Ru, v2-Su, v2,=Ru, vS*u, vexpj2vy0+R*u, vSu, vexp-j2vy0.
Gu, v=Hu, vPu, v=2 cos2vy0.
rx, y=n=1Nanrnx, y,
Ru, v=n=1NanRnu, v,
Hu, v=Bu, vAu, v+n=1NanRnu, v2.
Gu, v=Bu, vAu, v+n=1NanRnu, v2×n=1NanRnu, vS*u, vexpj2vy0+n=1Nan*Rn*u, vSu, vexp-j2vy0.
Gu, vS* u, vn=1NanRnu, vexpjϕu, vexpj2vy0+Su, vn=1NanRnu, vexp-jϕu, v×exp-j2vy0,
Rnu, vm=1NamRmu, vexp-j2vy0dudv=cn,
ani+1=ani+βcn-c0pnip0i,

Metrics