Abstract

Performance of the confined-reference coherence-encoding method for two- and three-dimensional complex image–data transmission through optical fibers is analyzed. Both acousto-optic and phase-only spatial light modulator implementations are considered. The signal-to-noise ratio, data rate, and probability of bit errors are issues that are discussed. Simulation results are presented.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Naulleau, M. Brown, C. Chen, E. Leith, “Direct three-dimensional image transmission through single-mode fibers with monochromatic light,” Opt. Lett. 21, 36–38 (1996).
    [CrossRef] [PubMed]
  2. P. Naulleau, C. Chen, E. Leith, “Analysis of direct three-dimensional image transmission through optical fibers by the use of coherence methods,” Appl. Opt. 35, 3953–3962 (1996).
    [CrossRef] [PubMed]
  3. P. Naulleau, E. Leith, “Imaging through optical fibers by spatial coherence encoding methods,” J. Opt. Soc. Am. A 13, 2096–2101 (1996).
    [CrossRef]
  4. A. Gover, C. P. Lee, A. Yariv, “Direct transmission of pictorial information in multimode optical fibers,” J. Opt. Soc. Am. 66, 306–311 (1976).
    [CrossRef]
  5. A. M. Tai, “Two-dimensional image transmission through a single optical fiber by wavelength-time multiplexing,” Appl. Opt. 22, 3826–3832 (1983).
    [CrossRef] [PubMed]
  6. L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).
  7. U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
    [CrossRef]
  8. G. J. Dunning, R. C. Lind, “Demonstration of image transmission through fibers by optical phase conjugation,” Opt. Lett. 7, 558–560 (1982).
    [CrossRef] [PubMed]
  9. S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using a phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
    [CrossRef]
  10. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit,” J. Opt. Soc. Am. 56, 1463–1472 (1966).
    [CrossRef]
  11. W. Lukosz, “Optical systems with resolving powers exceeding the classical limit. II,” J. Opt. Soc. Am. 57, 932–941 (1967).
    [CrossRef]
  12. A. W. Lohmann, D. P. Paris, “Super-resolution for nonbirefringent objects,” Appl. Opt. 3, 1037–1043 (1964).
    [CrossRef]
  13. M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
    [CrossRef]
  14. W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
    [CrossRef]
  15. E. N. Leith, “Small-aperture; high-resolution; two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
    [CrossRef] [PubMed]
  16. P. C. Sun, E. N. Leith, “Superresolution by spatial-temporal encoding methods,” Appl. Opt. 31, 4857–4862 (1992).
    [CrossRef] [PubMed]
  17. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 318–404
  18. G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
    [CrossRef]
  19. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
    [CrossRef]
  20. T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
    [CrossRef]
  21. N. T. Pelekanos, B. Deveaud, J. M. Gérard, H. Hass, U. Strauss, W. W. Rühle, J. Hebling, J. Kuhl, “All-optical spatial light modulator with megahertz modulation rates,” Opt. Lett. 20, 2099–2101 (1995).
    [CrossRef] [PubMed]
  22. T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-µm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
    [CrossRef]
  23. K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
    [CrossRef]
  24. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1186 (1996).
    [CrossRef] [PubMed]
  25. J. Proakis, D. Monolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988), pp. 682–731.
  26. T. Jenkins, Optical Sensing Techniques and Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 19–71
  27. I. Korn, Digital Communications (Van Nostrand Reinhold, New York, 1985), pp. 439–452.
    [CrossRef]

1996 (4)

1995 (2)

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

N. T. Pelekanos, B. Deveaud, J. M. Gérard, H. Hass, U. Strauss, W. W. Rühle, J. Hebling, J. Kuhl, “All-optical spatial light modulator with megahertz modulation rates,” Opt. Lett. 20, 2099–2101 (1995).
[CrossRef] [PubMed]

1993 (1)

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using a phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[CrossRef]

1992 (1)

1990 (2)

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

E. N. Leith, “Small-aperture; high-resolution; two-channel imaging system,” Opt. Lett. 15, 885–887 (1990).
[CrossRef] [PubMed]

1989 (1)

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

1988 (1)

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-µm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

1987 (1)

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

1985 (1)

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

1984 (1)

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
[CrossRef]

1983 (1)

1982 (1)

1979 (1)

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

1976 (1)

1973 (1)

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

1967 (1)

1966 (1)

1964 (1)

Akopov, L. I.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Bacon, D. D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Bowers, J. E.

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

Boyd, G. D.

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

Brown, M.

Burrus, C. A.

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Carr, E. C.

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

Cathey, W. T.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
[CrossRef]

Chemla, D. S.

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Chen, C.

Chirovsky, L. M. F.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

D’Asaro, L. A.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Dahringer, D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Damen, T. C.

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Deveaud, B.

Dianov, E. M.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Dunning, G. J.

Efron, U.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-µm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

English, J. H.

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

Frieden, B. R.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
[CrossRef]

Friesem, A. A.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

Fukushima, S.

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using a phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[CrossRef]

Gérard, J. M.

Goossen, K. W.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Gossard, A. C.

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Gover, A.

Hass, H.

Hebling, J.

Henry, J. E.

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

Hsu, T. Y.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-µm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Hui, S. P.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Jenkins, T.

T. Jenkins, Optical Sensing Techniques and Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 19–71

Kondo, M.

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Korn, I.

I. Korn, Digital Communications (Van Nostrand Reinhold, New York, 1985), pp. 439–452.
[CrossRef]

Kossives, D.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Kuhl, J.

Kurokawa, T.

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using a phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[CrossRef]

Kuznetsov, A. A.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Lane, B.

Lee, C. P.

Leibenguth, R.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Leith, E.

Leith, E. N.

Lentine, A. L.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Levy, U.

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

Lind, R. C.

Lohmann, A. W.

Lukosz, W.

Martin, R.

Miller, D. A. B.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Monolakis, D.

J. Proakis, D. Monolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988), pp. 682–731.

Naulleau, P.

Nefedov, S. M.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Paris, D. P.

Pelekanos, N. T.

Proakis, J.

J. Proakis, D. Monolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988), pp. 682–731.

Rhodes, W. T.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
[CrossRef]

Ritter, K. J.

Rühle, W. W.

Rushforth, C. K.

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
[CrossRef]

Sato, T.

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Soccolich, C. E.

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

Strauss, U.

Sun, P. C.

Tai, A. M.

Tseng, B.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Ueda, M.

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Voevodkin, G. G.

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Walker, J. A.

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

Wiegmann, W.

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Wood, T. H.

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

Worchesky, T. L.

Wu, W. Y.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-µm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Yariv, A.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 318–404

Appl. Opt. (5)

Electron. Lett. (3)

G. D. Boyd, J. E. Bowers, C. E. Soccolich, D. A. B. Miller, D. S. Chemla, L. M. F. Chirovsky, A. C. Gossard, J. H. English, “5.5 GHz multiple quantum well reflection modulator,” Electron. Lett. 25, 558–560 (1989).
[CrossRef]

T. H. Wood, E. C. Carr, C. A. Burrus, J. E. Henry, A. C. Gossard, J. H. English, “High-speed 2 × 2 electrically driven spatial light modulator made with GaAs/AlGaAs multiple quantum wells (MQWs),” Electron. Lett. 23, 916–917 (1987).
[CrossRef]

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-µm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, “131 ps optical modulation in semiconductor multiple quantum wells (MWQs),” IEEE J. Quantum Electron. QE-21, 117–119 (1985).
[CrossRef]

S. Fukushima, T. Kurokawa, “Parallel interconnection through an optical fiber using a phase conjugation mirror acceptable for optical data pattern,” IEEE J. Quantum Electron. 29, 613–618 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. W. Goossen, J. A. Walker, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. D. Bacon, D. Dahringer, L. M. F. Chirovsky, A. L. Lentine, D. A. B. Miller, “GaAs MQW modulators integrated with silicon CMOS,” IEEE Photon. Technol. Lett. 7, 360–362 (1995).
[CrossRef]

J. Opt. Soc. Am A (1)

W. T. Cathey, B. R. Frieden, W. T. Rhodes, C. K. Rushforth, “Image gathering and processing for enhanced resolution,” J. Opt. Soc. Am A 1, 241–250 (1984).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Opt. Acta (1)

M. Ueda, T. Sato, M. Kondo, “Superresolution by multiple superposition of image holograms having different carrier frequencies,” Opt. Acta 20, 403–410 (1973).
[CrossRef]

Opt. Commun. (1)

U. Levy, A. A. Friesem, “Direct picture transmission in a single optical fiber with holographic filters,” Opt. Commun. 30, 163–165 (1979).
[CrossRef]

Opt. Lett. (4)

Sov. J. Opt. Technol. (1)

L. I. Akopov, G. G. Voevodkin, E. M. Dianov, A. A. Kuznetsov, S. M. Nefedov, “Transfer of images of real objects along single-fiber lightguide by the spectral coding method and recording of these images,” Sov. J. Opt. Technol. 56, 474–477 (1990).

Other (4)

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), pp. 318–404

J. Proakis, D. Monolakis, Introduction to Digital Signal Processing (Macmillan, New York, 1988), pp. 682–731.

T. Jenkins, Optical Sensing Techniques and Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 19–71

I. Korn, Digital Communications (Van Nostrand Reinhold, New York, 1985), pp. 439–452.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Coherence-encoding system for direct image transmission through optical fibers.

Fig. 2
Fig. 2

Spatially incoherent source generation with A-O deflector. The drive signal is a chirp of bandwidth W and center frequency f 0. The input illumination is a plane wave having temporal frequency v = v 0. The output consists of a set of plane waves having a spatial bandwidth proportional to the A-O drive bandwidth (W). All the plane-wave elements are mutually incoherent because they have incurred different Doppler shifts, having been generated by different temporal-frequency components of the A-O drive signal.

Fig. 3
Fig. 3

Encoding and decoding object spatial-frequency components to and from unique temporal-frequency components that the fiber can transmit.

Fig. 4
Fig. 4

Coherence encoding implemented with 2-D phase-only SLM’s replacing the A-O cells. In this case the SLM is driven by a time-varying 2-D function such that the cross correlation of any two pixels over an adequate amount of time becomes zero. Each pixel on the SLM, being at the back focal plane of a collimating lens, illuminates the object with a single plane wave, and all the plane waves are mutually incoherent because of the modulation described above.

Fig. 5
Fig. 5

Block diagram for the coherence-encoding system, where we have assumed perfect codes with cross correlations equal to 0 and autocorrelations equal to 1. The A-O implementation looks like a frequency-division multiplexing system, where the individual f i functions are single-frequency temporal carriers. For the SLM case we have essentially a code-division multiplexing scheme, where the individual f i functions are random, pseudorandom, or deterministic phase functions.

Fig. 6
Fig. 6

Required laser power as a function of N for the A-O case, with various fixed output frame rates, a fixed exposure level (250,000 detected photons per pixel), and an object-to-reference-beam ratio of unity at the mixing plane. Also an additional factor of 4 power loss is assumed in the object beam because of the object distribution and stray losses.

Fig. 7
Fig. 7

A-O case bias photon noise SNR and the quantization noise SNR as a function of N, with a fixed exposure (250,000 photons detected per pixel) and, hence, linearly increasing laser power. The detector quantization is assumed to be 8 bits.

Fig. 8
Fig. 8

A-O case bias photon noise SNR as a function of N for both the fixed-exposure and the laser-power-limited (100-mW) cases (log-log plot).

Fig. 9
Fig. 9

Laser power as a function of sqrt (N) (the modulator-demodulator array is assumed to be sqrt (N) × sqrt (N) pixels in size), with various fixed output frame rates f; hence an increasing data rate, a fixed exposure level, and an object-to-reference-beam ratio of unity at the mixing plane. The exposure level is set to 400,000 detected photons per pixel on the basis of a detector well depth of 500,000 electrons, the detector quantum efficiency is set to 80%, the wavelength is set to 1.3 µm, and the pixel size is assumed to be 10 µm × 10 µm.

Fig. 10
Fig. 10

SLM-case bias-photon-noise SNR as a function of sqrt (N) for both the fixed-exposure and the laser-power-limited (1000-mW) cases (log-log plot).

Fig. 11
Fig. 11

Results for an 8 × 8 binary phase source SLM and an 8 × 8 binary amplitude input SLM with the use of an orthgonal code-word set with a code-word length of 64: (a) binary transmittance object, (b) reconstructed 64 × 64 image, (c) sampled and binarized version of the image in Fig. 6(b), (d) image formed with coherent plane-wave illumination.

Fig. 12
Fig. 12

Results for a 16 × 16 binary phase source SLM and an 8 × 8 binary amplitude input SLM with an orthgonal code-word set with a code-word length of 256: (a) reconstructed 64 × 64 image, (b) sampled and binarized version of the image in Fig. 7(a).

Fig. 13
Fig. 13

Results for a 16 × 16 analog phase source SLM and an 8 × 8 binary amplitude input SLM with a random phase code (uniform from -π to π): (a) reconstructed 64 × 64 image for a code of length 256, (b) reconstructed 64 × 64 image for a code of length 2048.

Tables (2)

Tables Icon

Table 1 Probability of Bit Errors for Amplitude Input SLM and Various Values of M versus Na

Tables Icon

Table 2 Probability of Bit Errors for Phase Input SLM and Various Values of M versus N a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Itotal=Is1N+R+2IsNR cos4πf0x,
Ndc=Is1N+RApTQehc/λ1/2,
SNR=1N2IsRApTQe1N+Rhc/λ1/2,
nS_rms=2RIsApTQeNhc/λ.
SNR=IoApTQeNhc/λ1/2,
Nq=DW12 2n,
SNRq=2R no12 2nDW,
PB=Q1-1rSNR2,
Qx=12πxexp-u22du.
PB2M-1M log2 MQ1-1rSNR2M-1,
Pb=QSNR,
Pb=2 log2 MQSNR sinπM,

Metrics