Abstract

A technique to analyze short-period (<1 hour) gravity wave structure in all-sky images of the airglow emissions is described. The technique involves spatial calibration, star removal, geographic projection, regridding, and flat fielding of the data prior to the determination of the horizontal wave parameters (wavelength, velocity, and period), by use of standard two-dimensional Fourier analysis techniques. The method was developed to exploit the information that is now available with wide-field solid state imaging systems. This technique permits interactive and quantitative investigations of large, complex data sets. Such studies are important for investigating gravity wave characteristics, their interaction with the airglow emissions, and their geographic and seasonal variability. We study one event of this type here and present possible evidence of a nonlinear wave–wave interaction in the upper atmosphere.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Krassovsky, M. V. Shagayev, “On the nature of internal gravity waves observed from hydroxyl emission,” Planet. Space Sci. 25, 200–201 (1977).
    [CrossRef]
  2. N. M. Gavrilov, G. M. Shved, “Study of internal gravity waves in the lower thermosphere from observations of the nocturnal sky airglow [OI] 5577 Å in Ashkhabad,” Ann. Geophys. 38, 789–803 (1982).
  3. H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
    [CrossRef]
  4. H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
    [CrossRef]
  5. M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987).
    [CrossRef]
  6. R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991).
    [CrossRef]
  7. S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).
  8. J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984).
    [CrossRef]
  9. G. R. Swenson, S. B. Mende, “OH emissions and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, Utah,” Geophys. Res. Lett. 21, 2239–2242 (1994).
    [CrossRef]
  10. P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
    [CrossRef]
  11. M. J. Taylor, F. J. Garcia, “A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm)and near-infrared OH nightglow emissions over Arecibo, Puerto Rico,” Geophys. Res. Lett. 22, 2473–2476 (1995).
    [CrossRef]
  12. J. R. Holton, An Introduction to Dynamic Meteorology, Vol. 23 of International Geophysical Series (Academic, San Diego, Calif., 1979).
  13. R. R. Garcia, S. Solomon, “The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere,” J. Geophys. Res. 90, 3850–3868 (1985).
    [CrossRef]
  14. I. M. Reid, R. A. Vincent, “Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia,” J. Atmos. Terr. Phys. 49, 1033–1048 (1987).
    [CrossRef]
  15. D. C. Fritts, T. E. VanZandt, “Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 50, 3685–3694 (1993).
    [CrossRef]
  16. M. J. Taylor, M. J. Hill, “Near-infrared imaging of hydroxyl wave structure over an ocean site at low latitudes,” Geophys. Res. Lett. 18, 1333–1336 (1991).
    [CrossRef]
  17. G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
    [CrossRef]
  18. M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
    [CrossRef]
  19. Q. Wu, T. L. Killeen, “Seasonal dependence of mesospheric gravity waves (100 km) at Peach Mountain Observatory, Michigan,” Geophys. Res. Lett. 23, 2211–2214 (1996).
    [CrossRef]
  20. A. W. Peterson, L. M. Kieffaber, “Infrared photography of OH airglow structures,” Nature 242, 321–322 (1973).
    [CrossRef]
  21. G. Moreels, M. Herse, “Photographic evidence of waves around the 85-km level,” Planet. Space Sci. 25, 265–273 (1977).
    [CrossRef]
  22. J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).
  23. E. B. Armstrong, “The association of visible airglow features with a gravity wave,” J. Atmos. Terr. Phys. 44, 325–336 (1982).
    [CrossRef]
  24. M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
    [CrossRef]
  25. M. A. Hapgood, M. J. Taylor, “Analysis of airglow image data,” Ann. Geophys. 38, 805–813 (1982).
  26. B. S. Lanchester, “Relation between discrete auroral forms and magnetic field disturbances,” Ph.D. dissertation (Department of Physics, University of Southampton, Southampton, UK, 1985).
  27. K. H. Lloyd, “Concise method for photogrammetry of objects in the sky,” , 1971 (Australian Defence Scientific Service, Canberra, Australia).
  28. W. Smart, Spherical Astronomy, 5th ed. (Cambridge U. Press, Cambridge, UK, 1965).
  29. W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).
  30. M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
    [CrossRef]
  31. D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
    [CrossRef]
  32. E. M. Dewan, R. E. Good, “Saturation and the ‘universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere,” J. Geophys. Res. 91, 2742–2748 (1986).
    [CrossRef]
  33. C. O. Hines, “The saturation of gravity waves in the middle atmosphere, II, Development of Doppler-spread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).
  34. C. S. Gardner, “Diffusive filtering theory of gravity wave spectra in the atmosphere,” J. Geophys. Res. 99, 20,601–20,622 (1994).
    [CrossRef]

1996

Q. Wu, T. L. Killeen, “Seasonal dependence of mesospheric gravity waves (100 km) at Peach Mountain Observatory, Michigan,” Geophys. Res. Lett. 23, 2211–2214 (1996).
[CrossRef]

1995

M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
[CrossRef]

M. J. Taylor, F. J. Garcia, “A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm)and near-infrared OH nightglow emissions over Arecibo, Puerto Rico,” Geophys. Res. Lett. 22, 2473–2476 (1995).
[CrossRef]

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

1994

G. R. Swenson, S. B. Mende, “OH emissions and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, Utah,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

C. S. Gardner, “Diffusive filtering theory of gravity wave spectra in the atmosphere,” J. Geophys. Res. 99, 20,601–20,622 (1994).
[CrossRef]

1993

D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[CrossRef]

D. C. Fritts, T. E. VanZandt, “Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 50, 3685–3694 (1993).
[CrossRef]

1992

S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).

1991

R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991).
[CrossRef]

M. J. Taylor, M. J. Hill, “Near-infrared imaging of hydroxyl wave structure over an ocean site at low latitudes,” Geophys. Res. Lett. 18, 1333–1336 (1991).
[CrossRef]

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

C. O. Hines, “The saturation of gravity waves in the middle atmosphere, II, Development of Doppler-spread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).

1987

I. M. Reid, R. A. Vincent, “Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia,” J. Atmos. Terr. Phys. 49, 1033–1048 (1987).
[CrossRef]

H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
[CrossRef]

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

1986

E. M. Dewan, R. E. Good, “Saturation and the ‘universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere,” J. Geophys. Res. 91, 2742–2748 (1986).
[CrossRef]

1985

H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
[CrossRef]

R. R. Garcia, S. Solomon, “The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere,” J. Geophys. Res. 90, 3850–3868 (1985).
[CrossRef]

1984

J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984).
[CrossRef]

1982

N. M. Gavrilov, G. M. Shved, “Study of internal gravity waves in the lower thermosphere from observations of the nocturnal sky airglow [OI] 5577 Å in Ashkhabad,” Ann. Geophys. 38, 789–803 (1982).

M. A. Hapgood, M. J. Taylor, “Analysis of airglow image data,” Ann. Geophys. 38, 805–813 (1982).

E. B. Armstrong, “The association of visible airglow features with a gravity wave,” J. Atmos. Terr. Phys. 44, 325–336 (1982).
[CrossRef]

1978

J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).

1977

G. Moreels, M. Herse, “Photographic evidence of waves around the 85-km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

V. I. Krassovsky, M. V. Shagayev, “On the nature of internal gravity waves observed from hydroxyl emission,” Planet. Space Sci. 25, 200–201 (1977).
[CrossRef]

1973

A. W. Peterson, L. M. Kieffaber, “Infrared photography of OH airglow structures,” Nature 242, 321–322 (1973).
[CrossRef]

Andreassen, O.

D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[CrossRef]

Armstrong, E. B.

E. B. Armstrong, “The association of visible airglow features with a gravity wave,” J. Atmos. Terr. Phys. 44, 325–336 (1982).
[CrossRef]

Baker, D. J.

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

Batista, P. P.

H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
[CrossRef]

Bishop, M. B.

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

Clemesha, B. R.

H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
[CrossRef]

Crawford, J.

J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).

Deehr, C. S.

H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
[CrossRef]

Dewan, E. M.

E. M. Dewan, R. E. Good, “Saturation and the ‘universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere,” J. Geophys. Res. 91, 2742–2748 (1986).
[CrossRef]

Espy, P. J.

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

Fagundes, P. R.

P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).

Fritts, D. C.

M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

D. C. Fritts, T. E. VanZandt, “Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 50, 3685–3694 (1993).
[CrossRef]

D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[CrossRef]

Garcia, F. J.

M. J. Taylor, F. J. Garcia, “A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm)and near-infrared OH nightglow emissions over Arecibo, Puerto Rico,” Geophys. Res. Lett. 22, 2473–2476 (1995).
[CrossRef]

Garcia, R. R.

R. R. Garcia, S. Solomon, “The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere,” J. Geophys. Res. 90, 3850–3868 (1985).
[CrossRef]

Gardner, C.

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

Gardner, C. S.

C. S. Gardner, “Diffusive filtering theory of gravity wave spectra in the atmosphere,” J. Geophys. Res. 99, 20,601–20,622 (1994).
[CrossRef]

Gavrilov, N. M.

N. M. Gavrilov, G. M. Shved, “Study of internal gravity waves in the lower thermosphere from observations of the nocturnal sky airglow [OI] 5577 Å in Ashkhabad,” Ann. Geophys. 38, 789–803 (1982).

Gilbert, K. L.

R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991).
[CrossRef]

Gobbi, D.

P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
[CrossRef]

Good, R. E.

E. M. Dewan, R. E. Good, “Saturation and the ‘universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere,” J. Geophys. Res. 91, 2742–2748 (1986).
[CrossRef]

Hapgood, M. A.

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

M. A. Hapgood, M. J. Taylor, “Analysis of airglow image data,” Ann. Geophys. 38, 805–813 (1982).

Hecht, J. H.

J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984).
[CrossRef]

Henriksen, K.

H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
[CrossRef]

Herse, M.

G. Moreels, M. Herse, “Photographic evidence of waves around the 85-km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

Hill, M. J.

M. J. Taylor, M. J. Hill, “Near-infrared imaging of hydroxyl wave structure over an ocean site at low latitudes,” Geophys. Res. Lett. 18, 1333–1336 (1991).
[CrossRef]

Hines, C. O.

C. O. Hines, “The saturation of gravity waves in the middle atmosphere, II, Development of Doppler-spread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).

Holton, J. R.

J. R. Holton, An Introduction to Dynamic Meteorology, Vol. 23 of International Geophysical Series (Academic, San Diego, Calif., 1979).

Isler, J. R.

M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[CrossRef]

Kieffaber, L. M.

A. W. Peterson, L. M. Kieffaber, “Infrared photography of OH airglow structures,” Nature 242, 321–322 (1973).
[CrossRef]

Killeen, T. L.

Q. Wu, T. L. Killeen, “Seasonal dependence of mesospheric gravity waves (100 km) at Peach Mountain Observatory, Michigan,” Geophys. Res. Lett. 23, 2211–2214 (1996).
[CrossRef]

Krassovsky, V. I.

V. I. Krassovsky, M. V. Shagayev, “On the nature of internal gravity waves observed from hydroxyl emission,” Planet. Space Sci. 25, 200–201 (1977).
[CrossRef]

Lanchester, B. S.

B. S. Lanchester, “Relation between discrete auroral forms and magnetic field disturbances,” Ph.D. dissertation (Department of Physics, University of Southampton, Southampton, UK, 1985).

Lloyd, K. H.

K. H. Lloyd, “Concise method for photogrammetry of objects in the sky,” , 1971 (Australian Defence Scientific Service, Canberra, Australia).

Lowe, R. P.

R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991).
[CrossRef]

Mende, S. B.

G. R. Swenson, S. B. Mende, “OH emissions and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, Utah,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

Moreels, G.

G. Moreels, M. Herse, “Photographic evidence of waves around the 85-km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

Myrabø, H. K.

H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
[CrossRef]

Neal, P. C.

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

Pendleton, W. R.

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

Peterson, A. W.

A. W. Peterson, L. M. Kieffaber, “Infrared photography of OH airglow structures,” Nature 242, 321–322 (1973).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).

Reid, I. M.

I. M. Reid, R. A. Vincent, “Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia,” J. Atmos. Terr. Phys. 49, 1033–1048 (1987).
[CrossRef]

Ross, M. N.

J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984).
[CrossRef]

Rothwell, P.

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).

Sahai, Y.

P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
[CrossRef]

H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
[CrossRef]

Shagayev, M. V.

V. I. Krassovsky, M. V. Shagayev, “On the nature of internal gravity waves observed from hydroxyl emission,” Planet. Space Sci. 25, 200–201 (1977).
[CrossRef]

Shepard, G. G.

S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).

Shved, G. M.

N. M. Gavrilov, G. M. Shved, “Study of internal gravity waves in the lower thermosphere from observations of the nocturnal sky airglow [OI] 5577 Å in Ashkhabad,” Ann. Geophys. 38, 789–803 (1982).

Sica, R. J.

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

Smart, W.

W. Smart, Spherical Astronomy, 5th ed. (Cambridge U. Press, Cambridge, UK, 1965).

Solomon, S.

R. R. Garcia, S. Solomon, “The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere,” J. Geophys. Res. 90, 3850–3868 (1985).
[CrossRef]

Swenson, G. R.

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

G. R. Swenson, S. B. Mende, “OH emissions and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, Utah,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

Takahashi, H.

P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
[CrossRef]

H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
[CrossRef]

Tao, X.

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

Taylor, M. J.

M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

M. J. Taylor, F. J. Garcia, “A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm)and near-infrared OH nightglow emissions over Arecibo, Puerto Rico,” Geophys. Res. Lett. 22, 2473–2476 (1995).
[CrossRef]

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

M. J. Taylor, M. J. Hill, “Near-infrared imaging of hydroxyl wave structure over an ocean site at low latitudes,” Geophys. Res. Lett. 18, 1333–1336 (1991).
[CrossRef]

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

M. A. Hapgood, M. J. Taylor, “Analysis of airglow image data,” Ann. Geophys. 38, 805–813 (1982).

J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).

Taylor, V.

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

Teukolsy, S. A.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).

Thomas, G.

D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[CrossRef]

Turnbull, D. N.

R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991).
[CrossRef]

VanZandt, T. E.

D. C. Fritts, T. E. VanZandt, “Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 50, 3685–3694 (1993).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).

Viereck, R. A.

H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
[CrossRef]

Vincent, R. A.

I. M. Reid, R. A. Vincent, “Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia,” J. Atmos. Terr. Phys. 49, 1033–1048 (1987).
[CrossRef]

Walterscheid, R. L.

J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984).
[CrossRef]

Wiens, R. H.

S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).

Wu, Q.

Q. Wu, T. L. Killeen, “Seasonal dependence of mesospheric gravity waves (100 km) at Peach Mountain Observatory, Michigan,” Geophys. Res. Lett. 23, 2211–2214 (1996).
[CrossRef]

Zhang, S. P.

S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).

Ann. Geophys.

N. M. Gavrilov, G. M. Shved, “Study of internal gravity waves in the lower thermosphere from observations of the nocturnal sky airglow [OI] 5577 Å in Ashkhabad,” Ann. Geophys. 38, 789–803 (1982).

M. A. Hapgood, M. J. Taylor, “Analysis of airglow image data,” Ann. Geophys. 38, 805–813 (1982).

Geophys. Res. Lett.

M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995).
[CrossRef]

D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993).
[CrossRef]

G. R. Swenson, S. B. Mende, “OH emissions and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, Utah,” Geophys. Res. Lett. 21, 2239–2242 (1994).
[CrossRef]

M. J. Taylor, F. J. Garcia, “A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm)and near-infrared OH nightglow emissions over Arecibo, Puerto Rico,” Geophys. Res. Lett. 22, 2473–2476 (1995).
[CrossRef]

M. J. Taylor, M. J. Hill, “Near-infrared imaging of hydroxyl wave structure over an ocean site at low latitudes,” Geophys. Res. Lett. 18, 1333–1336 (1991).
[CrossRef]

G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995).
[CrossRef]

M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995).
[CrossRef]

Q. Wu, T. L. Killeen, “Seasonal dependence of mesospheric gravity waves (100 km) at Peach Mountain Observatory, Michigan,” Geophys. Res. Lett. 23, 2211–2214 (1996).
[CrossRef]

J. Atmos. Sci.

C. O. Hines, “The saturation of gravity waves in the middle atmosphere, II, Development of Doppler-spread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).

D. C. Fritts, T. E. VanZandt, “Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 50, 3685–3694 (1993).
[CrossRef]

J. Atmos. Terr. Phys.

I. M. Reid, R. A. Vincent, “Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia,” J. Atmos. Terr. Phys. 49, 1033–1048 (1987).
[CrossRef]

E. B. Armstrong, “The association of visible airglow features with a gravity wave,” J. Atmos. Terr. Phys. 44, 325–336 (1982).
[CrossRef]

P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995).
[CrossRef]

S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).

J. Geophys. Res.

J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984).
[CrossRef]

H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987).
[CrossRef]

R. R. Garcia, S. Solomon, “The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere,” J. Geophys. Res. 90, 3850–3868 (1985).
[CrossRef]

C. S. Gardner, “Diffusive filtering theory of gravity wave spectra in the atmosphere,” J. Geophys. Res. 99, 20,601–20,622 (1994).
[CrossRef]

E. M. Dewan, R. E. Good, “Saturation and the ‘universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere,” J. Geophys. Res. 91, 2742–2748 (1986).
[CrossRef]

Nature

J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).

A. W. Peterson, L. M. Kieffaber, “Infrared photography of OH airglow structures,” Nature 242, 321–322 (1973).
[CrossRef]

Planet. Space Sci.

G. Moreels, M. Herse, “Photographic evidence of waves around the 85-km level,” Planet. Space Sci. 25, 265–273 (1977).
[CrossRef]

V. I. Krassovsky, M. V. Shagayev, “On the nature of internal gravity waves observed from hydroxyl emission,” Planet. Space Sci. 25, 200–201 (1977).
[CrossRef]

M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987).
[CrossRef]

R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991).
[CrossRef]

H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985).
[CrossRef]

M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991).
[CrossRef]

Other

B. S. Lanchester, “Relation between discrete auroral forms and magnetic field disturbances,” Ph.D. dissertation (Department of Physics, University of Southampton, Southampton, UK, 1985).

K. H. Lloyd, “Concise method for photogrammetry of objects in the sky,” , 1971 (Australian Defence Scientific Service, Canberra, Australia).

W. Smart, Spherical Astronomy, 5th ed. (Cambridge U. Press, Cambridge, UK, 1965).

W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).

J. R. Holton, An Introduction to Dynamic Meteorology, Vol. 23 of International Geophysical Series (Academic, San Diego, Calif., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

512 × 512-pixel resolution all-sky CCD image showing short-period gravity wave structure in the OI (557.7nm) airglow emission. Data were recorded from Haleakala, Hawaii, on 22 October 1993 at 12:27 UT with a 90-s exposure.

Fig. 2
Fig. 2

Plots showing effect of projecting a pixel in the all-sky image onto a geographic coordinate system, assuming an emission height of 96 km: (a) all-sky image into 18 × 18 elements corresponding to 10° superpixels; (b) corresponding footprint of each of these superpixels is shown on a 1000 km × 1000 km area. Note the significant increase in size of the footprints at lower elevations. The solid border in (a) indicates the mapped area.

Fig. 3
Fig. 3

Plots showing (a) variation in range from zenith along the airglow layer as a function of elevation angle for an emission height of 96 km, and (b) corresponding tangential and radial pixel resolution as a function of elevation angle for an all-sky image of 512 × 512 pixels.

Fig. 4
Fig. 4

Illustration showing coordinate mappings used for transforming data from the original all-sky format to geographic coordinates, and vice versa.

Fig. 5
Fig. 5

Plot showing variation in the lens function G versus elevation; G is the normalized distance measured from the center of the image.

Fig. 6
Fig. 6

Illustration showing airglow geometry.

Fig. 7
Fig. 7

Example of all-sky star calibration, using the image of Fig. 1; circles indicate the computed positions of all stars of magnitude greater than 1 within the field of view.

Fig. 8
Fig. 8

Example illustrating star removal algorithm applied to Fig. 1. A threshold of 20 pixel counts and a maximum star size of 12 pixels were used.

Fig. 9
Fig. 9

Illustration showing method used to interpolate between the projected image on the geographic grid and the original image pixels; M denotes the grid element for which the intensity is to be estimated.

Fig. 10
Fig. 10

Unwarped image showing results of projecting Fig. 8 onto a geographic grid; in this example, an area corresponding to 800 km × 800 km has been mapped with a pixel resolution of 2 km/pixel.

Fig. 11
Fig. 11

Example illustrating localized feature unwarping: (a) image taken at 10:19 UT on the same night as Fig. 1, showing small-scale waves to the southeast at extremely low elevation; (b) unwarped image corresponding to the area indicated by the white border.

Fig. 12
Fig. 12

Scan of averaged image (AV) showing the combined effects of lens vignetting and Van Rhijn enhancement on the all-sky image profile.

Fig. 13
Fig. 13

Unwarped δI/Ī image corresponding to data from Fig. 1; black features are remnants of near-field antennas and other structures evident along the horizon in Fig. 1.

Fig. 14
Fig. 14

Two examples illustrating 2-D FFT analysis of airglow data and image reconstruction: (a)–(c) a subsection of Fig. 13 (indicated by the rectangular border) that isolates the large-scale waves along with the 2-D FFT and a reconstruction of the wave pattern, corresponding to just those frequencies in the peak of the FFT; (d)–(f) a similar situation for the analysis of the small-scale waves (indicated by the square border in Fig. 13).

Fig. 15
Fig. 15

Plots showing (a) the variation of phase of the spectral peak of the large-scale wave component with time; the slope of the linear least-squares fit to the data gives the period of 21.0 min, and (b) illustrates an alternative method for determining the period from the same data; a 1-D FFT is taken of the complex-valued data at the peak of the 2-D FFT. The peak indicates the wave frequency.

Tables (2)

Tables Icon

Table 1 Filter Information and Mean Heights for Airglow Emissions in Upper Mesosphere

Tables Icon

Table 2 Gravity Wave Parameters Derived from 2-D FFT analysis

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

i, jf, gaz, elx, y.
fg=a0a1a2b0b1b21ij,
fg=Gelsin (az)cos (az),
el=cos-1a sin αc,
α=π-ψ/2,c=H2+a2-2Ha cos α1/2,a=2R+Hsin ψ/2,ψ=r/R+H,r=x2+y21/2,
az=tan-1xy.
S=I¯+δI+Nsky+Nstars.
A=Hi, jI¯+δI+Nsky+Nstars+Nelec.
B=Hi, jNsky+Nstars+Nelec.
Ans=Hi, jI¯+δI+Nsky+Nelec,
Bns=Hi, jNsky+nelec,
BC=Ans-Bns=Hi,jI¯+δI.
AV=BC¯=Hi, jI¯.
FF=Ī+δI=BCAVĪ.
δIĪ=BCAV-1.

Metrics