Abstract

We describe the design and development of an eight-element hardware-compressive receive true-time-delay steering system that employs wavelength-division multiplexing. The laboratory system performance and results from the system demonstration at the antenna range are discussed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).
  2. W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  3. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiberoptic wavelength multiplexed system for true time delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  4. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
    [CrossRef] [PubMed]
  5. J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
    [CrossRef]
  6. M. Y. Frankel, R. D. Esman, “True time delay fiberoptic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
    [CrossRef]
  7. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
    [CrossRef] [PubMed]
  8. E. D. Toughlian, H. Zmuda, “A photonic variable rf delay line for phased-array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
    [CrossRef]
  9. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992).
    [CrossRef] [PubMed]
  10. A. M. Levine, “Fiber-optic phased array antenna system for rf transmission,” U.S. patent4,028,702 (7June1977); “Fiber optics for radar and data systems,” in Laser and Fiber Optics Communications, M. Ross, ed., Proc. SPIE150, 185–192 (1978).
  11. D. L. Baldwin, A. G. Garas, “Architectures and performance of laser links in microwave phased array antenna systems,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. SPIE1217, 235–246 (1990).
  12. A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength-multiplexed fiber-optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 604–614 (1992).
  13. C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).
  14. G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 373–378 (1992).
  15. N. A. Riza, “Three-dimensional optical time delay units for radar,” in Photonics for Processors, Neural Networks and Memories II, J. L. Horner, B. Javidi, S. T. Kowel, eds., Proc. SPIE2026, 227–237 (1993).
  16. A. P. Goutzoulis, D. K. Davies, “Wavelength-coded binary fiberoptic delay line for time steering of array antennas,” U.S. patent5,125,051 (10June1992); A. P. Goutzoulis, “Recirculating binary fiberoptic delay line apparatus for time steering,” U.S. patent5,101,455 (22March1992).
  17. P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased-array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
    [CrossRef]
  18. F. C. Allard, Fiber Optics Handbook for Engineers and Scientists (McGraw-Hill, New York, 1990).
  19. D. K. Davies, C. J. Coppock, A. P. Goutzoulis, “Optimization of optical coupling in fiber-optic systems by fiber etching,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1151, 105–111, (1989).
    [CrossRef]
  20. A. Goutzoulis, R. Gouse, “Comparison of conventional and fiberoptic manifolds for a dual band (UHF and S) phased array antenna,” IEEE Trans. Antennas Propag. 45, 246–253 (1997).
    [CrossRef]
  21. A. Goutzoulis, J. Zomp, A. Johnson, “Development and antenna range demonstration of an 8-element optically powered directly modulated receive UHF fiber-optic manifold,” J. Lightwave Technol. 14, 2499–2505 (1996).
    [CrossRef]
  22. R. E. Hawkins, “Combining gain, noise figure and intercept points for casaded circuit elements,” RF Design March, 77–81 (1990).

1997

A. Goutzoulis, R. Gouse, “Comparison of conventional and fiberoptic manifolds for a dual band (UHF and S) phased array antenna,” IEEE Trans. Antennas Propag. 45, 246–253 (1997).
[CrossRef]

1996

A. Goutzoulis, J. Zomp, A. Johnson, “Development and antenna range demonstration of an 8-element optically powered directly modulated receive UHF fiber-optic manifold,” J. Lightwave Technol. 14, 2499–2505 (1996).
[CrossRef]

D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5300 (1996).
[CrossRef] [PubMed]

1995

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

M. Y. Frankel, R. D. Esman, “True time delay fiberoptic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

1994

1993

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased-array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

1992

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiberoptic wavelength multiplexed system for true time delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992).
[CrossRef] [PubMed]

1991

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

1990

E. D. Toughlian, H. Zmuda, “A photonic variable rf delay line for phased-array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

1985

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Allard, F. C.

F. C. Allard, Fiber Optics Handbook for Engineers and Scientists (McGraw-Hill, New York, 1990).

Antoine, J.

Baldwin, D. L.

D. L. Baldwin, A. G. Garas, “Architectures and performance of laser links in microwave phased array antenna systems,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. SPIE1217, 235–246 (1990).

Berstein, N.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Cardone, L.

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Coppock, C. J.

D. K. Davies, C. J. Coppock, A. P. Goutzoulis, “Optimization of optical coupling in fiber-optic systems by fiber etching,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1151, 105–111, (1989).
[CrossRef]

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiberoptic wavelength multiplexed system for true time delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

D. K. Davies, C. J. Coppock, A. P. Goutzoulis, “Optimization of optical coupling in fiber-optic systems by fiber etching,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1151, 105–111, (1989).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Wavelength-coded binary fiberoptic delay line for time steering of array antennas,” U.S. patent5,125,051 (10June1992); A. P. Goutzoulis, “Recirculating binary fiberoptic delay line apparatus for time steering,” U.S. patent5,101,455 (22March1992).

A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength-multiplexed fiber-optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 604–614 (1992).

Dolfi, D.

Esman, R. D.

M. Y. Frankel, R. D. Esman, “True time delay fiberoptic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

Forrest, S. R.

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased-array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, R. D. Esman, “True time delay fiberoptic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

Freitag, P. M.

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased-array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

Garas, A. G.

D. L. Baldwin, A. G. Garas, “Architectures and performance of laser links in microwave phased array antenna systems,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. SPIE1217, 235–246 (1990).

Goldberg, W.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Gopinath, A.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Gouse, R.

A. Goutzoulis, R. Gouse, “Comparison of conventional and fiberoptic manifolds for a dual band (UHF and S) phased array antenna,” IEEE Trans. Antennas Propag. 45, 246–253 (1997).
[CrossRef]

Goutzoulis, A.

A. Goutzoulis, R. Gouse, “Comparison of conventional and fiberoptic manifolds for a dual band (UHF and S) phased array antenna,” IEEE Trans. Antennas Propag. 45, 246–253 (1997).
[CrossRef]

A. Goutzoulis, J. Zomp, A. Johnson, “Development and antenna range demonstration of an 8-element optically powered directly modulated receive UHF fiber-optic manifold,” J. Lightwave Technol. 14, 2499–2505 (1996).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiberoptic wavelength multiplexed system for true time delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

D. K. Davies, C. J. Coppock, A. P. Goutzoulis, “Optimization of optical coupling in fiber-optic systems by fiber etching,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1151, 105–111, (1989).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Wavelength-coded binary fiberoptic delay line for time steering of array antennas,” U.S. patent5,125,051 (10June1992); A. P. Goutzoulis, “Recirculating binary fiberoptic delay line apparatus for time steering,” U.S. patent5,101,455 (22March1992).

A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength-multiplexed fiber-optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 604–614 (1992).

Granger, P.

Hawkins, R. E.

R. E. Hawkins, “Combining gain, noise figure and intercept points for casaded circuit elements,” RF Design March, 77–81 (1990).

Hibbs-Brenner, M. K.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Hrycak, P.

Huignard, J. P.

Joffre, P.

Johnson, A.

A. Goutzoulis, J. Zomp, A. Johnson, “Development and antenna range demonstration of an 8-element optically powered directly modulated receive UHF fiber-optic manifold,” J. Lightwave Technol. 14, 2499–2505 (1996).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

Jones, V.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Kalweit, E.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Lee, J.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Leonard, J. L.

G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 373–378 (1992).

Levine, A. M.

A. M. Levine, “Fiber-optic phased array antenna system for rf transmission,” U.S. patent4,028,702 (7June1977); “Fiber optics for radar and data systems,” in Laser and Fiber Optics Communications, M. Ross, ed., Proc. SPIE150, 185–192 (1978).

Lewis, J.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Livingston, S.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Loo, R.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Magel, G. A.

G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 373–378 (1992).

Marta, T.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Mukherjee, S. D.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Newberg, I.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Ng, W.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Philippet, D.

Riza, N. A.

N. A. Riza, “Three-dimensional optical time delay units for radar,” in Photonics for Processors, Neural Networks and Memories II, J. L. Horner, B. Javidi, S. T. Kowel, eds., Proc. SPIE2026, 227–237 (1993).

Soref, R.

Sullivan, C. T.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Tangonan, G.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Toughlian, E. D.

E. D. Toughlian, H. Zmuda, “A photonic variable rf delay line for phased-array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

Walston, A.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Walterson, R.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

Wechsberg, M.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Yen, H.-W.

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

Zmuda, H.

E. D. Toughlian, H. Zmuda, “A photonic variable rf delay line for phased-array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

Zomp, J.

A. Goutzoulis, J. Zomp, A. Johnson, “Development and antenna range demonstration of an 8-element optically powered directly modulated receive UHF fiber-optic manifold,” J. Lightwave Technol. 14, 2499–2505 (1996).
[CrossRef]

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiberoptic wavelength multiplexed system for true time delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt.

IEEE Microwave Guided Wave Lett.

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased-array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

IEEE Trans. Antennas Propag.

A. Goutzoulis, R. Gouse, “Comparison of conventional and fiberoptic manifolds for a dual band (UHF and S) phased array antenna,” IEEE Trans. Antennas Propag. 45, 246–253 (1997).
[CrossRef]

J. Lee, R. Loo, S. Livingston, V. Jones, J. Lewis, H.-W. Yen, G. Tangonan, M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Propag. 43, 966–982 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Y. Frankel, R. D. Esman, “True time delay fiberoptic control of an ultrawideband array transmitter/receiver with multibeam capability,” IEEE Trans. Microwave Theory Tech. 43, 2387–2394 (1995).
[CrossRef]

J. Lightwave Technol.

E. D. Toughlian, H. Zmuda, “A photonic variable rf delay line for phased-array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

A. Goutzoulis, J. Zomp, A. Johnson, “Development and antenna range demonstration of an 8-element optically powered directly modulated receive UHF fiber-optic manifold,” J. Lightwave Technol. 14, 2499–2505 (1996).
[CrossRef]

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Berstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Microwave J.

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Opt. Eng.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiberoptic wavelength multiplexed system for true time delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Other

F. C. Allard, Fiber Optics Handbook for Engineers and Scientists (McGraw-Hill, New York, 1990).

D. K. Davies, C. J. Coppock, A. P. Goutzoulis, “Optimization of optical coupling in fiber-optic systems by fiber etching,” in Optical Information Processing Systems and Architectures, B. Javidi, ed., Proc. SPIE1151, 105–111, (1989).
[CrossRef]

R. E. Hawkins, “Combining gain, noise figure and intercept points for casaded circuit elements,” RF Design March, 77–81 (1990).

A. M. Levine, “Fiber-optic phased array antenna system for rf transmission,” U.S. patent4,028,702 (7June1977); “Fiber optics for radar and data systems,” in Laser and Fiber Optics Communications, M. Ross, ed., Proc. SPIE150, 185–192 (1978).

D. L. Baldwin, A. G. Garas, “Architectures and performance of laser links in microwave phased array antenna systems,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. SPIE1217, 235–246 (1990).

A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength-multiplexed fiber-optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 604–614 (1992).

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide techology at 1.32 µm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 264–271 (1992).

G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 373–378 (1992).

N. A. Riza, “Three-dimensional optical time delay units for radar,” in Photonics for Processors, Neural Networks and Memories II, J. L. Horner, B. Javidi, S. T. Kowel, eds., Proc. SPIE2026, 227–237 (1993).

A. P. Goutzoulis, D. K. Davies, “Wavelength-coded binary fiberoptic delay line for time steering of array antennas,” U.S. patent5,125,051 (10June1992); A. P. Goutzoulis, “Recirculating binary fiberoptic delay line apparatus for time steering,” U.S. patent5,101,455 (22March1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of a 16-element hybrid WDM receive TTD system that employs optical summation. LD, laser diode; NF, noise figure; DET, detector; AMP, amplifier. An optical attenuator with attenuation equal to the BIFODEL loss would be inserted at the output of the unbiased delay set (bottom left-hand channel). A rf attenuator with attenuation equal to the DiBi loss would be inserted at the output of the unbiased delay set (top left-hand channel). If necessary, an optical amplifier can be inserted between the 4:1 combiner and the 4:1 DMUX.

Fig. 2
Fig. 2

Schematic diagram of an eight-element hybrid WDM receive TTD system that employs rf summation. RF SUM, rf combiner. Each laser diode is driven by a rf amplifier (not shown). Rf attenuators are inserted at the detector (DET) outputs for the four far-right-hand channels.

Fig. 3
Fig. 3

Schematic diagram of a combined low-loss transmit–receive WDM–TTD architecture for a 16-element array antenna. 4:1 HYBRID, 4:1 rf combiner–splitter; 1 × 2 RF, 1 × 2 rf switch; 4:1 MM DMUX, 4:1 multimode demultiplexer; 4:1 ASYM. COMB., 4:1 asymmetrical combiner; 1 × 2 O, 1 × 2 optical switch; 4:1 MUX–DMUX, four-channel MUX–DMUX. Each laser diode is driven by a rf amplifier for both transmission (Tx) and receive (Rx) modes. If necessary, an optical amplifier can be inserted between the 4:1 multimode DMUX and the 4:1 asymmetrical combiner. A rf attenuator is inserted at the 1 × 2 rf switch input of the top left-hand channel. An optical attenuator is inserted at the 1 × 2 optical switch output of the unbiased optical channel (middle left-hand switch).

Fig. 4
Fig. 4

Frequency response of the fiber-optic receive active-driver link. A 2.3-GHz, 3-dB bandwidth covering the 0.2–2.5-GHz band is shown.

Fig. 5
Fig. 5

Phase errors of the fiber-optic receive active-driver link over the 0.7-1.4-GHz band showing a peak-to-peak deviation of 3.47°.

Fig. 6
Fig. 6

Photograph of the assembled receive WDM–TTD prototype as it undergoes testing in the laboratory.

Fig. 7
Fig. 7

Output response of elements 5–7 relative to element 4 over the 0.6–1.6-GHz band (2-dB scale).

Fig. 8
Fig. 8

Antenna-range setup showing the eight-element receive WDM–TTD-driven phased-array antenna mounted on a three-axis rotary positioner and the four-element matching transmitter (middle right-hand side).

Fig. 9
Fig. 9

Close-up of the receiving array antenna driven by the receive WDM–TTD system.

Fig. 10
Fig. 10

Squint-free antenna patterns for steering at the -43°, 0°, and +40° angles and for frequencies of 700, 900, 1000, 1100, and 1400 MHz.

Fig. 11
Fig. 11

Antenna pattern for the frequency of 1000 MHz showing the sidelobe levels of -27 dB.

Fig. 12
Fig. 12

Examples of antenna patterns as a function of the DiBi and BIFODEL switch settings covering the -45° to +40° angular range for the frequency of 800 MHz.

Tables (1)

Tables Icon

Table 1 Examples of System Output for the Coherent Gain Test

Metrics