Abstract

Continuous-wave ultrasonic modulation of scattered laser light was used to image objects buried in tissue-simulating turbid media. The buried object had an absorption coefficient greater than the background turbid medium. The ultrasonic wave that was focused into the turbid media modulated the laser light that passed through the ultrasonic field. The modulated laser light that was collected by a photomultiplier tube reflected the local mechanical and optical properties in the zone of ultrasonic modulation. Objects buried in the middle plane of 5-cm-thick dense turbid media were imaged with millimeter resolution through the scanning and detecting alterations of the ultrasound-modulated optical signal. The optical properties of the dense turbid media included an absorption coefficient of 0.1 cm-1 and a reduced scattering coefficient of 10 cm-1 and were comparable with those of biological tissues in the visible and near-IR ranges. The dependence of the ultrasound-modulated optical signal on the off-axis distance of the detector from the optic axis and the area of the detector was studied as well.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See related studies in R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. L. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series, pp. 181–186.
  3. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
    [Crossref]
  4. L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
    [Crossref] [PubMed]
  5. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [Crossref]
  6. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [Crossref]
  7. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
    [Crossref] [PubMed]
  8. R. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [Crossref] [PubMed]
  9. L.-H. Wang, X. Zhao, S. L. Jacques, “Computation of the optical properties of tissues from light reflectance using a neural network,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 391–399 (1994).
  10. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  11. L. Wang, X. Zhao, S. L. Jacques, “Ultrasound-modulated optical tomography for thick tissue imaging,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 237–248, (1995).
    [Crossref]
  12. A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988).

1997 (1)

1995 (2)

1992 (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

R. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[Crossref]

Farrell, R. J.

R. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Genack, A. Z.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Jacques, S. L.

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series, pp. 181–186.

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound-modulated optical tomography for thick tissue imaging,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 237–248, (1995).
[Crossref]

L.-H. Wang, X. Zhao, S. L. Jacques, “Computation of the optical properties of tissues from light reflectance using a neural network,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 391–399 (1994).

Kempe, M.

Korpel, A.

A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988).

Larionov, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[Crossref]

Patterson, M. S.

R. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[Crossref]

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series, pp. 181–186.

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound-modulated optical tomography for thick tissue imaging,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 237–248, (1995).
[Crossref]

Wang, L.-H.

L.-H. Wang, X. Zhao, S. L. Jacques, “Computation of the optical properties of tissues from light reflectance using a neural network,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 391–399 (1994).

Wilson, B. C.

R. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Zaslavsky, D.

Zhao, X.

L. Wang, S. L. Jacques, X. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995).
[Crossref] [PubMed]

L.-H. Wang, X. Zhao, S. L. Jacques, “Computation of the optical properties of tissues from light reflectance using a neural network,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 391–399 (1994).

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound-modulated optical tomography for thick tissue imaging,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 237–248, (1995).
[Crossref]

J. Opt. Soc. Am. A (1)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12, 510–519 (1992).
[Crossref] [PubMed]

Med. Phys. (1)

R. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[Crossref] [PubMed]

Opt. Lett. (1)

Physica B (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Other (7)

See related studies in R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

L. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series, pp. 181–186.

F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 500–510 (1993).
[Crossref]

L.-H. Wang, X. Zhao, S. L. Jacques, “Computation of the optical properties of tissues from light reflectance using a neural network,” in Laser-Tissue Interaction V, S. L. Jacques, ed., Proc. SPIE2134A, 391–399 (1994).

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

L. Wang, X. Zhao, S. L. Jacques, “Ultrasound-modulated optical tomography for thick tissue imaging,” in Photon Propagation in Tissues, B. Chance, D. T. Delpy, G. J. Mueller, eds., Proc. SPIE2626, 237–248, (1995).
[Crossref]

A. Korpel, Acousto-Optics (Marcel Dekker, New York, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the experimental setup.

Fig. 2
Fig. 2

Typical ac signal representing ultrasound-modulated optical signal.

Fig. 3
Fig. 3

Peak-to-peak ac voltage as a function of the horizontal position (x coordinate) of the PMT.

Fig. 4
Fig. 4

(a) Normalized ac and dc voltages as a function of the area of the aperture in front of the PMT; (b) normalized ac signal representing ultrasound-modulated optical signal as a function of the normalized dc signal representing unmodulated optical signal. A square-root fit was shown to model the experimental data.

Fig. 5
Fig. 5

Simulated relative dc signal as a function of the area of detection, based on diffusion theory. A linear fit was shown to model the experimental data.

Fig. 6
Fig. 6

(a) 2-D ac image of an absorbing object buried in a 5-cm-thick dense turbid medium, using the ultrasound-modulated optical signal (ac signal); (b) 2-D attempted dc image of an absorbing object buried in a 5-cm-thick dense turbid medium, using the unmodulated optical signal (dc signal).

Metrics