Abstract

An investigation was performed of the effectiveness of a time-resolved method for imaging very-low-contrast features embedded in highly scattering media. Experiments employed slabs of breastlike material into which were inserted small cylindrical objects having either a scattering or an absorption coefficient of 4, 2, 1.5, and 1.1 times greater than the surrounding medium. An attempt was made to quantify the degree of contrast produced by each object. The results indicate that time-gating is far more effective at enhancing the contrast of the scattering inhomogeneities than of the absorbing inhomogeneities. This observation is shown to agree with a diffusion-based model, which also predicts that time-gating can decrease the contrast of absorbing inhomogeneities unless very short time-gates can be employed.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, A. Katzir, eds., Time-Resolved Spectroscopy and Imaging of Tissues, Proc. SPIE1431 (1991).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, Proc. SPIE2389 (1995).
  3. R. Berg, S. Andersson–Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt.35, 3432–3440 (1996).
    [CrossRef] [PubMed]
  4. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging of a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1991).
    [CrossRef]
  5. L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  6. R. Berg, O. Jarlman, S. Svanberg, “Medical transillumination imaging using short-pulse diode lasers,” Appl. Opt. 32, 574–579 (1993).
    [CrossRef] [PubMed]
  7. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  8. J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
    [CrossRef] [PubMed]
  9. J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
    [CrossRef] [PubMed]
  10. J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
    [CrossRef] [PubMed]
  11. H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
    [CrossRef] [PubMed]
  12. T. L. Troy, D. L. Page, E. M. Sevick–Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
    [CrossRef] [PubMed]
  13. M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [CrossRef]
  14. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  15. A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
    [CrossRef] [PubMed]
  16. S. R. Arridge, “Photon measurement density functions: analytical forms,” Appl. Opt. 34, 7395–7409 (1995).
    [CrossRef] [PubMed]
  17. M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model MediaB. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).
  18. S. Feng, F.-A. Zeng, B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt. 34, 3826–3837 (1995).
    [CrossRef] [PubMed]
  19. J. C. Hebden, S. R. Arridge, “Imaging through scattering media using an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
    [CrossRef] [PubMed]
  20. P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

1996

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick–Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

A. H. Gandjbakhche, R. F. Bonner, R. Nossal, G. H. Weiss, “Absorptivity contrast in transillumination imaging of tissue abnormalities,” Appl. Opt. 35, 1767–1774 (1996).
[CrossRef] [PubMed]

J. C. Hebden, S. R. Arridge, “Imaging through scattering media using an analytical model of perturbation amplitudes in the time domain,” Appl. Opt. 35, 6788–6796 (1996).
[CrossRef] [PubMed]

1995

1994

1993

1991

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Time-resolved imaging of a realistic tissue phantom: μs′ and μa images versus time-integrated images,” Appl. Opt. 35, 4533–4540 (1991).
[CrossRef]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

1990

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

1989

Alfano, R. R.

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Arridge, S. R.

Baba, K.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Berg, R.

Bonner, R. F.

Chance, B.

Cubeddu, R.

Das, B. B.

Delpy, D. T.

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. T. Delpy, “Enhanced time-resolved imaging with a diffusion model of photon transport,” Opt. Lett. 19, 311–313 (1994).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Feng, S.

Firbank, M.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Gandjbakhche, A. H.

Hall, D. J.

J. C. Hebden, D. J. Hall, M. Firbank, D. T. Delpy, “Time-resolved optical imaging of a solid tissue-equivalent phantom,” Appl. Opt. 34, 8038–8047 (1995).
[CrossRef] [PubMed]

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

He, P.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Hebden, J. C.

Heusmann, H.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Jacques, S. L.

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model MediaB. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).

Jarlman, O.

Kaneko, M.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Kölzer, J.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Mitic, G.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

Nossal, R.

Ohta, K.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Ostermeyer, M. R.

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model MediaB. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).

Page, D. L.

T. L. Troy, D. L. Page, E. M. Sevick–Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Patterson, M. S.

Pifferi, A.

Sevick–Muraca, E. M.

T. L. Troy, D. L. Page, E. M. Sevick–Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Svanberg, S.

Takai, M.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Taroni, P.

Torricelli, A.

Troy, T. L.

T. L. Troy, D. L. Page, E. M. Sevick–Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Valentini, G.

Wang, L.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Weiss, G. H.

Wilson, B. C.

Yamashita, Y.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Yoo, K. M.

Zeng, F.-A.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Appl. Opt.

J. Biomed. Opt.

H. Heusmann, J. Kölzer, G. Mitic, “Characterization of female breasts in vivo by time resolved and spectroscopic measurements in near infrared spectroscopy,” J. Biomed. Opt. 1, 425–434 (1996).
[CrossRef] [PubMed]

T. L. Troy, D. L. Page, E. M. Sevick–Muraca, “Optical properties of normal and diseased breast tissues: prognosis for optical mammography,” J. Biomed. Opt. 1, 342–355 (1996).
[CrossRef] [PubMed]

Med. Phys.

J. C. Hebden, D. J. Hall, D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201–208 (1995).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

M. Firbank, D. T. Delpy, “A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[CrossRef]

Rad. Med.

P. He, M. Kaneko, M. Takai, K. Baba, Y. Yamashita, K. Ohta, “Breast cancer diagnosis by laser transmission photo-scanning with spectro-analysis (Report 4),” Rad. Med. 8, 1–5 (1990).

Science

L. Wang, P. P. Ho, C. Liu, G. Zhang, R. R. Alfano, “Ballistic 2D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other

B. Chance, A. Katzir, eds., Time-Resolved Spectroscopy and Imaging of Tissues, Proc. SPIE1431 (1991).

B. Chance, R. R. Alfano, eds., Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, Proc. SPIE2389 (1995).

R. Berg, S. Andersson–Engels, O. Jarlman, S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt.35, 3432–3440 (1996).
[CrossRef] [PubMed]

M. R. Ostermeyer, S. L. Jacques, “Perturbation theory for optical diffusion theory: a general approach for absorbing and scattering objects in tissue,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model MediaB. Chance, R. R. Alfano, eds., Proc. SPIE2389, 98–102 (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorbing and scattering contrast phantoms.

Fig. 2
Fig. 2

Absorbing contrast phantom time-gated image generated for Δt = 2500 ps. Expected positions of inhomogeneities are indicated by white crosses.

Fig. 3
Fig. 3

Scattering contrast phantom time-gated image generated for Δt = 2500 ps. Expected positions of inhomogeneities are indicated by white crosses.

Fig. 4
Fig. 4

Scattering contrast phantom time-gated image generated from diffusion model fits for Δt = 300 ps.

Fig. 5
Fig. 5

Percent contrast as a function of absorption coefficient ratio, evaluated from the time-gated images of the absorbing contrast phantom.

Fig. 6
Fig. 6

Percent contrast as a function of scatter coefficient ratio, evaluated from the time-gated images of the scattering contrast phantom.

Fig. 7
Fig. 7

Percent contrast as a function of Δt, evaluated for the cylinder with the 4.0 absorption coefficient ratio (filled circles) and the cylinder with the 4.0 scatter coefficient ratio (hollow circles).

Fig. 8
Fig. 8

Model predictions of contrast versus Δt for an absorbing inhomogeneity (solid curve) and a scattering inhomogeneity (dashed curve) embedded in the center of a slab.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C=IH-IBIB×100%.

Metrics