Abstract

A dosimetric system has been developed to measure the spatially resolved light dose absorbed by a photosensitizer in a tissue-simulating medium. These gelatin-based dosimeters had macroscopic optical scattering and absorption properties that are typical for homogeneous tissue and contained the photosensitizer benzoporphyrin derivative monoacid (BPD-MA). A reporter molecule, 2′7′-dichlorofluorescin diacetate (DCF-DA), served as an actinometer, which could be photosensitized by BPD-MA to generate a highly fluorescent photoproduct. The relative photosensitizing efficiencies of high-intensity pulsed and cw laser light were compared in these tissue-simulating dosimeters. These measurements demonstrate an increase in penetration for pulsed light as compared with cw light in the dosimeters. A numerical simulation of the light propagation based on optical diffusion theory was used along with the energy levels of the photosensitizer molecule to examine the mechanisms involved in the absorbed dose. The increased penetration of high-intensity pulsed light was due to a transient decrease in the absorption of the photosensitizer, resulting from saturation of the photosensitizer optical transitions. This study provides the first direct comparison of the photodynamic dose absorbed by a photosensitizer using both high-intensity pulsed and cw laser light in a tissue-simulating medium. These measurements demonstrate that a small increase in depth of treatment is possible with pulsed laser light as compared with cw laser light simply on the basis of the unique photochemistry of the photosensitizer. However, this effect still needs to be examined carefully in tumor tissue, where other biological or chemical effects may become significant.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Dougherty, “Yearly review: photodynamic therapy,” Photochem. Photobiol. 58, 895–900 (1993).
    [CrossRef] [PubMed]
  2. R. van Hillegersberg, W. J. Kort, J. H. P. Wilson, “Current status of photodynamic therapy in oncology,” Drugs 48, 510–527 (1994).
    [CrossRef] [PubMed]
  3. C. J. Gomer, “Preclinical examination of first and second generation photosensitizers used in photodynamic therapy [review],” Photochem. Photobiol. 54, 1093–1107 (1991).
    [CrossRef] [PubMed]
  4. B. W. Henderson, T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 145–157 (1992).
    [CrossRef] [PubMed]
  5. D. Phillips, “The photochemistry of sensitizers for photodynamic therapy,” Pure Appl. Chem. 67, 117–126 (1995).
    [CrossRef]
  6. H. I. Pass, “Review: photodynamic therapy in oncology: mechanisms and clinical use,” J. Natl. Cancer Inst. 85, 443–456 (1993).
    [CrossRef] [PubMed]
  7. J. G. Levy, “Recent clinical results with benzoporphyrin derivative monoacid ring A,” presented at Twenty-third Annual meeting of the American Society of Photobiology, Washington, D.C. (May 1995).
  8. T. Hasan, J. A. Parrish, “Photodynamic therapy of cancer,” in Cancer Medicine (Williams and Wilkins, Baltimore, Md., 1996), Chap. 50, pp. 739–751.
  9. B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327 (1986).
    [CrossRef] [PubMed]
  10. A. E. Profio, D. R. Doiron, “Dose measurements in photodynamic therapy of cancer,” Lasers Surg. Med. 7, 1–5 (1987).
    [CrossRef] [PubMed]
  11. J. L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–63 (1985).
    [CrossRef]
  12. A. R. Morgan, D. Skalkos, “Second generation photosensitizers: where are we going and where should we be going?” in Future Directions and Applications in Photodynamic Therapy, SPIE Inst. Series6, 87–106.
  13. S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
    [CrossRef] [PubMed]
  14. M. S. Patterson, B. C. Wilson, R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51, 343–349 (1990).
    [CrossRef] [PubMed]
  15. J. A. Barltrop, J. D. Coyle, Principles of Photochemistry (Wiley, Toronto, 1978), Chap. 3.
  16. T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
    [CrossRef] [PubMed]
  17. M. S. Patterson, B. C. Wilson, “A theoretical study of the influence of sensitizer photobleaching on depth of necrosis in photodynamic therapy,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2133, 208–219 (1994).
  18. A. A. Andreoni, “Two-step photoactivation of hematoporphyrin by excimer-pumped dye-laser pulses,” J. Photochem. Photobiol. 1, 181–193 (1987).
    [CrossRef]
  19. G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
    [CrossRef] [PubMed]
  20. P. Vaupel, F. Kallinowski, P. Okunieff, “Blood, flow oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
    [PubMed]
  21. H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
    [CrossRef]
  22. L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
    [CrossRef]
  23. L. W. Mason, A. J. Welch, M. J. C. van Gemert, “Photodynamic assay of light distributions in tissue phantoms,” Lasers Surg. Med. 8, 521–526 (1988).
    [CrossRef] [PubMed]
  24. A. S. Keston, R. Brandt, “The fluorometric analysis of ultramicro quantities of hydrogen peroxide,” Anal. Biochem. 11, 1–5 (1965).
    [CrossRef] [PubMed]
  25. J. A. Royall, H. Ischiropoulos, “Evaluation of 2′7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells,” Arch. Biochem. Biophys. 302, 348–355 (1993).
    [CrossRef] [PubMed]
  26. C. P. Label, H. Ischiropoulos, S. C. Bondy, “Evaluation of the probe 2′7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol. 5, 227–231 (1992).
    [CrossRef]
  27. P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.
  28. B. M. Aveline, T. Hasan, R. W. Redmond, “Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” Photochem. Photobiol. 59, 328–335 (1994).
    [CrossRef] [PubMed]
  29. R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
    [CrossRef]
  30. M. S. Patterson, S. Anderson-Engels, B. C. Wilson, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
    [CrossRef] [PubMed]
  31. S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
    [CrossRef] [PubMed]
  32. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  33. B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fibre-based reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Photodynamic Therapy, C. J. Gomer, ed., SPIE Inst. Series6, 219–232 (1990).
  34. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady state reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef]
  35. A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am. 68, 1045–1049 (1978).
    [CrossRef]
  36. W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
    [CrossRef] [PubMed]
  37. A. Ishimaru, “Diffusion of light in turbid media,” Appl. Opt. 28, 2210–2215 (1989).
    [CrossRef] [PubMed]
  38. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992) Chap. 19.
  39. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 18, 3484–3488 (1989).
  40. B. W. Pogue, R. W. Redmond, T. Hasan, “Dosimetry for pulsed-laser photodynamic therapy,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 130–139 (1996).
    [CrossRef]
  41. B. M. Aveline, T. Hasan, R. W. Redmond, “The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” J. Photochem. Photobiol. B 30, 161–169 (1995).
    [CrossRef] [PubMed]
  42. T. J. Farrell, B. C. Wilson, M. S. Patterson, R. Chow, “The dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 146–155 (1991).
    [CrossRef]
  43. M. C. Berenbaum, R. Bonnett, P. A. Scourides, “In vivo biological activity of the components of haematoporphyrin derivative.” Br. J. Cancer 45, 571–581 (1982).
    [CrossRef] [PubMed]
  44. J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
    [CrossRef] [PubMed]
  45. V. H. Fingar, W. R. Potter, B. W. Henderson, “Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes,” Photochem. Photobiol. 45, 643–650 (1987).
    [CrossRef] [PubMed]
  46. B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
    [CrossRef]
  47. C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
    [CrossRef] [PubMed]

1996 (1)

R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
[CrossRef]

1995 (3)

M. S. Patterson, S. Anderson-Engels, B. C. Wilson, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

B. M. Aveline, T. Hasan, R. W. Redmond, “The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” J. Photochem. Photobiol. B 30, 161–169 (1995).
[CrossRef] [PubMed]

D. Phillips, “The photochemistry of sensitizers for photodynamic therapy,” Pure Appl. Chem. 67, 117–126 (1995).
[CrossRef]

1994 (4)

R. van Hillegersberg, W. J. Kort, J. H. P. Wilson, “Current status of photodynamic therapy in oncology,” Drugs 48, 510–527 (1994).
[CrossRef] [PubMed]

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

B. M. Aveline, T. Hasan, R. W. Redmond, “Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” Photochem. Photobiol. 59, 328–335 (1994).
[CrossRef] [PubMed]

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

1993 (4)

J. A. Royall, H. Ischiropoulos, “Evaluation of 2′7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells,” Arch. Biochem. Biophys. 302, 348–355 (1993).
[CrossRef] [PubMed]

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

T. J. Dougherty, “Yearly review: photodynamic therapy,” Photochem. Photobiol. 58, 895–900 (1993).
[CrossRef] [PubMed]

H. I. Pass, “Review: photodynamic therapy in oncology: mechanisms and clinical use,” J. Natl. Cancer Inst. 85, 443–456 (1993).
[CrossRef] [PubMed]

1992 (5)

B. W. Henderson, T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 145–157 (1992).
[CrossRef] [PubMed]

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

C. P. Label, H. Ischiropoulos, S. C. Bondy, “Evaluation of the probe 2′7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol. 5, 227–231 (1992).
[CrossRef]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady state reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

1991 (1)

C. J. Gomer, “Preclinical examination of first and second generation photosensitizers used in photodynamic therapy [review],” Photochem. Photobiol. 54, 1093–1107 (1991).
[CrossRef] [PubMed]

1990 (2)

M. S. Patterson, B. C. Wilson, R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51, 343–349 (1990).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1989 (3)

1988 (2)

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

L. W. Mason, A. J. Welch, M. J. C. van Gemert, “Photodynamic assay of light distributions in tissue phantoms,” Lasers Surg. Med. 8, 521–526 (1988).
[CrossRef] [PubMed]

1987 (4)

A. A. Andreoni, “Two-step photoactivation of hematoporphyrin by excimer-pumped dye-laser pulses,” J. Photochem. Photobiol. 1, 181–193 (1987).
[CrossRef]

A. E. Profio, D. R. Doiron, “Dose measurements in photodynamic therapy of cancer,” Lasers Surg. Med. 7, 1–5 (1987).
[CrossRef] [PubMed]

V. H. Fingar, W. R. Potter, B. W. Henderson, “Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes,” Photochem. Photobiol. 45, 643–650 (1987).
[CrossRef] [PubMed]

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

1986 (3)

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327 (1986).
[CrossRef] [PubMed]

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

1985 (2)

J. L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–63 (1985).
[CrossRef]

J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

1982 (1)

M. C. Berenbaum, R. Bonnett, P. A. Scourides, “In vivo biological activity of the components of haematoporphyrin derivative.” Br. J. Cancer 45, 571–581 (1982).
[CrossRef] [PubMed]

1978 (1)

1965 (1)

A. S. Keston, R. Brandt, “The fluorometric analysis of ultramicro quantities of hydrogen peroxide,” Anal. Biochem. 11, 1–5 (1965).
[CrossRef] [PubMed]

Ahmed, M. S.

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

Aizawa, K.

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Akdemir, D.

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

Anderson-Engels, S.

Andreoni, A. A.

A. A. Andreoni, “Two-step photoactivation of hematoporphyrin by excimer-pumped dye-laser pulses,” J. Photochem. Photobiol. 1, 181–193 (1987).
[CrossRef]

Aveline, B. M.

B. M. Aveline, T. Hasan, R. W. Redmond, “The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” J. Photochem. Photobiol. B 30, 161–169 (1995).
[CrossRef] [PubMed]

B. M. Aveline, T. Hasan, R. W. Redmond, “Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” Photochem. Photobiol. 59, 328–335 (1994).
[CrossRef] [PubMed]

Barltrop, J. A.

J. A. Barltrop, J. D. Coyle, Principles of Photochemistry (Wiley, Toronto, 1978), Chap. 3.

Barr, H.

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

Berenbaum, M. C.

J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

M. C. Berenbaum, R. Bonnett, P. A. Scourides, “In vivo biological activity of the components of haematoporphyrin derivative.” Br. J. Cancer 45, 571–581 (1982).
[CrossRef] [PubMed]

Bondy, S. C.

C. P. Label, H. Ischiropoulos, S. C. Bondy, “Evaluation of the probe 2′7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol. 5, 227–231 (1992).
[CrossRef]

Bonnett, R.

M. C. Berenbaum, R. Bonnett, P. A. Scourides, “In vivo biological activity of the components of haematoporphyrin derivative.” Br. J. Cancer 45, 571–581 (1982).
[CrossRef] [PubMed]

Boulnois, J. L.

J. L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–63 (1985).
[CrossRef]

Bown, S. G.

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

Brandt, R.

A. S. Keston, R. Brandt, “The fluorometric analysis of ultramicro quantities of hydrogen peroxide,” Anal. Biochem. 11, 1–5 (1965).
[CrossRef] [PubMed]

Burns, D. M.

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

Chance, B.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Chow, R.

T. J. Farrell, B. C. Wilson, M. S. Patterson, R. Chow, “The dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 146–155 (1991).
[CrossRef]

Coleridge-Smith, P. D.

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

Coyle, J. D.

J. A. Barltrop, J. D. Coyle, Principles of Photochemistry (Wiley, Toronto, 1978), Chap. 3.

Diddens, H.

R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
[CrossRef]

Doiron, D. R.

A. E. Profio, D. R. Doiron, “Dose measurements in photodynamic therapy of cancer,” Lasers Surg. Med. 7, 1–5 (1987).
[CrossRef] [PubMed]

Dougherty, T. J.

T. J. Dougherty, “Yearly review: photodynamic therapy,” Photochem. Photobiol. 58, 895–900 (1993).
[CrossRef] [PubMed]

B. W. Henderson, T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 145–157 (1992).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady state reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fibre-based reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Photodynamic Therapy, C. J. Gomer, ed., SPIE Inst. Series6, 219–232 (1990).

T. J. Farrell, B. C. Wilson, M. S. Patterson, R. Chow, “The dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 146–155 (1991).
[CrossRef]

Fingar, V. H.

V. H. Fingar, W. R. Potter, B. W. Henderson, “Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes,” Photochem. Photobiol. 45, 643–650 (1987).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992) Chap. 19.

Flotte, T. J.

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

Freyer, W.

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

Gijsbers, G. H. M.

J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

Gilles, R.

R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
[CrossRef]

Gomer, C. J.

C. J. Gomer, “Preclinical examination of first and second generation photosensitizers used in photodynamic therapy [review],” Photochem. Photobiol. 54, 1093–1107 (1991).
[CrossRef] [PubMed]

Graff, R.

M. S. Patterson, B. C. Wilson, R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51, 343–349 (1990).
[CrossRef] [PubMed]

Hasan, T.

R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
[CrossRef]

B. M. Aveline, T. Hasan, R. W. Redmond, “The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” J. Photochem. Photobiol. B 30, 161–169 (1995).
[CrossRef] [PubMed]

B. M. Aveline, T. Hasan, R. W. Redmond, “Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” Photochem. Photobiol. 59, 328–335 (1994).
[CrossRef] [PubMed]

T. Hasan, J. A. Parrish, “Photodynamic therapy of cancer,” in Cancer Medicine (Williams and Wilkins, Baltimore, Md., 1996), Chap. 50, pp. 739–751.

B. W. Pogue, R. W. Redmond, T. Hasan, “Dosimetry for pulsed-laser photodynamic therapy,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 130–139 (1996).
[CrossRef]

Henderson, B. W.

B. W. Henderson, T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 145–157 (1992).
[CrossRef] [PubMed]

V. H. Fingar, W. R. Potter, B. W. Henderson, “Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes,” Photochem. Photobiol. 45, 643–650 (1987).
[CrossRef] [PubMed]

Hillenkamp, F.

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

Hockberger, P. E.

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

Hung, W. Y.

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

Ischiropoulos, H.

J. A. Royall, H. Ischiropoulos, “Evaluation of 2′7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells,” Arch. Biochem. Biophys. 302, 348–355 (1993).
[CrossRef] [PubMed]

C. P. Label, H. Ischiropoulos, S. C. Bondy, “Evaluation of the probe 2′7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol. 5, 227–231 (1992).
[CrossRef]

Ishimaru, A.

Jacques, S. L.

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

Kallinowski, F.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood, flow oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Kato, H.

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Kawabe, H.

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Keston, A. S.

A. S. Keston, R. Brandt, “The fluorometric analysis of ultramicro quantities of hydrogen peroxide,” Anal. Biochem. 11, 1–5 (1965).
[CrossRef] [PubMed]

Kochevar, I. E.

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

Kollias, N.

R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
[CrossRef]

Konaka, C.

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Kort, W. J.

R. van Hillegersberg, W. J. Kort, J. H. P. Wilson, “Current status of photodynamic therapy in oncology,” Drugs 48, 510–527 (1994).
[CrossRef] [PubMed]

Label, C. P.

C. P. Label, H. Ischiropoulos, S. C. Bondy, “Evaluation of the probe 2′7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol. 5, 227–231 (1992).
[CrossRef]

Lee, C.

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

Leupold, D.

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

Levy, J. G.

J. G. Levy, “Recent clinical results with benzoporphyrin derivative monoacid ring A,” presented at Twenty-third Annual meeting of the American Society of Photobiology, Washington, D.C. (May 1995).

Lilge, L.

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

Lynch, M. C.

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

MacRobert, A. J.

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

Marijnissen, J. P. A.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

Mason, L. W.

L. W. Mason, A. J. Welch, M. J. C. van Gemert, “Photodynamic assay of light distributions in tissue phantoms,” Lasers Surg. Med. 8, 521–526 (1988).
[CrossRef] [PubMed]

McGimpsey, W. G.

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

Morgan, A. R.

A. R. Morgan, D. Skalkos, “Second generation photosensitizers: where are we going and where should we be going?” in Future Directions and Applications in Photodynamic Therapy, SPIE Inst. Series6, 87–106.

Okunaka, T.

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Okunieff, P.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood, flow oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Parrish, J. A.

T. Hasan, J. A. Parrish, “Photodynamic therapy of cancer,” in Cancer Medicine (Williams and Wilkins, Baltimore, Md., 1996), Chap. 50, pp. 739–751.

Pass, H. I.

H. I. Pass, “Review: photodynamic therapy in oncology: mechanisms and clinical use,” J. Natl. Cancer Inst. 85, 443–456 (1993).
[CrossRef] [PubMed]

Patterson, M. S.

M. S. Patterson, S. Anderson-Engels, B. C. Wilson, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady state reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

M. S. Patterson, B. C. Wilson, R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51, 343–349 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 18, 3484–3488 (1989).

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327 (1986).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, “A theoretical study of the influence of sensitizer photobleaching on depth of necrosis in photodynamic therapy,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2133, 208–219 (1994).

T. J. Farrell, B. C. Wilson, M. S. Patterson, R. Chow, “The dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 146–155 (1991).
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fibre-based reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Photodynamic Therapy, C. J. Gomer, ed., SPIE Inst. Series6, 219–232 (1990).

Paul, A.

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

Phillips, D.

D. Phillips, “The photochemistry of sensitizers for photodynamic therapy,” Pure Appl. Chem. 67, 117–126 (1995).
[CrossRef]

Pogue, B. W.

B. W. Pogue, R. W. Redmond, T. Hasan, “Dosimetry for pulsed-laser photodynamic therapy,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 130–139 (1996).
[CrossRef]

Potter, W. R.

V. H. Fingar, W. R. Potter, B. W. Henderson, “Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes,” Photochem. Photobiol. 45, 643–650 (1987).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992) Chap. 19.

Profio, A. E.

A. E. Profio, D. R. Doiron, “Dose measurements in photodynamic therapy of cancer,” Lasers Surg. Med. 7, 1–5 (1987).
[CrossRef] [PubMed]

Redmond, R. W.

B. M. Aveline, T. Hasan, R. W. Redmond, “The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” J. Photochem. Photobiol. B 30, 161–169 (1995).
[CrossRef] [PubMed]

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

B. M. Aveline, T. Hasan, R. W. Redmond, “Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” Photochem. Photobiol. 59, 328–335 (1994).
[CrossRef] [PubMed]

B. W. Pogue, R. W. Redmond, T. Hasan, “Dosimetry for pulsed-laser photodynamic therapy,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 130–139 (1996).
[CrossRef]

Royall, J. A.

J. A. Royall, H. Ischiropoulos, “Evaluation of 2′7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells,” Arch. Biochem. Biophys. 302, 348–355 (1993).
[CrossRef] [PubMed]

Sakai, H.

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Scourides, P. A.

M. C. Berenbaum, R. Bonnett, P. A. Scourides, “In vivo biological activity of the components of haematoporphyrin derivative.” Br. J. Cancer 45, 571–581 (1982).
[CrossRef] [PubMed]

Siddique, T.

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

Skalkos, D.

A. R. Morgan, D. Skalkos, “Second generation photosensitizers: where are we going and where should we be going?” in Future Directions and Applications in Photodynamic Therapy, SPIE Inst. Series6, 87–106.

Skimina, T. A.

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

Smith, G.

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

Smith, P. D. C.

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

Star, W. M.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

Stiel, H.

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

Teuchner, K.

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992) Chap. 19.

Tralau, C. J.

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

van Gemert, J. C.

J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

van Gemert, M. J. C.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

L. W. Mason, A. J. Welch, M. J. C. van Gemert, “Photodynamic assay of light distributions in tissue phantoms,” Lasers Surg. Med. 8, 521–526 (1988).
[CrossRef] [PubMed]

van Hillegersberg, R.

R. van Hillegersberg, W. J. Kort, J. H. P. Wilson, “Current status of photodynamic therapy in oncology,” Drugs 48, 510–527 (1994).
[CrossRef] [PubMed]

Vaupel, P.

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood, flow oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992) Chap. 19.

Weiman, T. J.

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

L. W. Mason, A. J. Welch, M. J. C. van Gemert, “Photodynamic assay of light distributions in tissue phantoms,” Lasers Surg. Med. 8, 521–526 (1988).
[CrossRef] [PubMed]

Wilson, B. C.

M. S. Patterson, S. Anderson-Engels, B. C. Wilson, “Absorption spectroscopy in tissue-simulating materials: a theoretical and experimental study of photon paths,” Appl. Opt. 34, 22–30 (1995).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady state reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

M. S. Patterson, B. C. Wilson, R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51, 343–349 (1990).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 18, 3484–3488 (1989).

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327 (1986).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, “A theoretical study of the influence of sensitizer photobleaching on depth of necrosis in photodynamic therapy,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2133, 208–219 (1994).

T. J. Farrell, B. C. Wilson, M. S. Patterson, R. Chow, “The dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 146–155 (1991).
[CrossRef]

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fibre-based reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Photodynamic Therapy, C. J. Gomer, ed., SPIE Inst. Series6, 219–232 (1990).

Wilson, J. H. P.

R. van Hillegersberg, W. J. Kort, J. H. P. Wilson, “Current status of photodynamic therapy in oncology,” Drugs 48, 510–527 (1994).
[CrossRef] [PubMed]

Anal. Biochem. (1)

A. S. Keston, R. Brandt, “The fluorometric analysis of ultramicro quantities of hydrogen peroxide,” Anal. Biochem. 11, 1–5 (1965).
[CrossRef] [PubMed]

Appl. Opt. (3)

Arch. Biochem. Biophys. (1)

J. A. Royall, H. Ischiropoulos, “Evaluation of 2′7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells,” Arch. Biochem. Biophys. 302, 348–355 (1993).
[CrossRef] [PubMed]

Br. J. Cancer (4)

S. G. Bown, C. J. Tralau, P. D. C. Smith, D. Akdemir, T. J. Weiman, “Photodynamic therapy with porphyrin and phthal ocyanine sensitization: quantitative studies in normal rat liver,” Br. J. Cancer 54, 43–52 (1986).
[CrossRef] [PubMed]

M. C. Berenbaum, R. Bonnett, P. A. Scourides, “In vivo biological activity of the components of haematoporphyrin derivative.” Br. J. Cancer 45, 571–581 (1982).
[CrossRef] [PubMed]

J. C. van Gemert, M. C. Berenbaum, G. H. M. Gijsbers, “Wavelength and light-dose dependence in tumour phototherapy with haematoporphyrin derivative,” Br. J. Cancer 52, 43–49 (1985).
[CrossRef] [PubMed]

C. J. Tralau, A. J. MacRobert, P. D. Coleridge-Smith, H. Barr, S. G. Bown, “Photodynamic therapy with phthalocyanine sensitization: quantitative studies in a transplantable rat fibrosarcoma,” Br. J. Cancer 55, 389–395 (1987).
[CrossRef] [PubMed]

Cancer Res. (1)

P. Vaupel, F. Kallinowski, P. Okunieff, “Blood, flow oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review,” Cancer Res. 49, 6449–6465 (1989).
[PubMed]

Chem. Res. Toxicol. (1)

C. P. Label, H. Ischiropoulos, S. C. Bondy, “Evaluation of the probe 2′7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress,” Chem. Res. Toxicol. 5, 227–231 (1992).
[CrossRef]

Drugs (1)

R. van Hillegersberg, W. J. Kort, J. H. P. Wilson, “Current status of photodynamic therapy in oncology,” Drugs 48, 510–527 (1994).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

J. Natl. Cancer Inst. (1)

H. I. Pass, “Review: photodynamic therapy in oncology: mechanisms and clinical use,” J. Natl. Cancer Inst. 85, 443–456 (1993).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Photochem. Photobiol. (3)

R. Gilles, N. Kollias, T. Hasan, H. Diddens, “Spectral characterization of the BPD-MA photoproduct formed in fetal calf solutions during irradiation with 690 nm cw radiation,” J. Photochem. Photobiol. 33, 87–90 (1996).
[CrossRef]

H. Stiel, K. Teuchner, A. Paul, W. Freyer, D. Leupold, “Two-photon excitation of alkyl-substituted magnesium phthalocyanine: radical formation via higher excited states,” J. Photochem. Photobiol. 80, 289–298 (1994).
[CrossRef]

A. A. Andreoni, “Two-step photoactivation of hematoporphyrin by excimer-pumped dye-laser pulses,” J. Photochem. Photobiol. 1, 181–193 (1987).
[CrossRef]

J. Photochem. Photobiol. B (1)

B. M. Aveline, T. Hasan, R. W. Redmond, “The effects of aggregation, protein binding and cellular incorporation on the photophysical properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” J. Photochem. Photobiol. B 30, 161–169 (1995).
[CrossRef] [PubMed]

Jpn. J. Cancer Res. (1)

T. Okunaka, H. Kato, C. Konaka, H. Sakai, H. Kawabe, K. Aizawa, “A comparison between argon-dye and excimer-dye laser for photodynamic effect in transplanted mouse tumor,” Jpn. J. Cancer Res. 83, 226–231 (1992).
[CrossRef] [PubMed]

Lasers Med. Sci. (2)

J. L. Boulnois, “Photophysical processes in recent medical laser developments: a review,” Lasers Med. Sci. 1, 47–63 (1985).
[CrossRef]

B. C. Wilson, M. S. Patterson, D. M. Burns, “Effect of photosensitizer concentration in tissue on the penetration depth of photoactivating light,” Lasers Med. Sci. 1, 235–244 (1986).
[CrossRef]

Lasers Surg. Med. (2)

A. E. Profio, D. R. Doiron, “Dose measurements in photodynamic therapy of cancer,” Lasers Surg. Med. 7, 1–5 (1987).
[CrossRef] [PubMed]

L. W. Mason, A. J. Welch, M. J. C. van Gemert, “Photodynamic assay of light distributions in tissue phantoms,” Lasers Surg. Med. 8, 521–526 (1988).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady state reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef]

Photochem. Photobiol. (8)

V. H. Fingar, W. R. Potter, B. W. Henderson, “Drug and light dose dependence of photodynamic therapy: a study of tumor cell clonogenicity and histologic changes,” Photochem. Photobiol. 45, 643–650 (1987).
[CrossRef] [PubMed]

L. Lilge, T. J. Flotte, I. E. Kochevar, S. L. Jacques, F. Hillenkamp, “Photoactivable fluorophores for the measurement of fluence in turbid media,” Photochem. Photobiol. 58, 37–44 (1993).
[CrossRef]

B. M. Aveline, T. Hasan, R. W. Redmond, “Photophysical and photosensitizing properties of benzoporphyrin derivative monoacid ring A (BPD-MA),” Photochem. Photobiol. 59, 328–335 (1994).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, R. Graff, “In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine,” Photochem. Photobiol. 51, 343–349 (1990).
[CrossRef] [PubMed]

G. Smith, W. G. McGimpsey, M. C. Lynch, I. E. Kochevar, R. W. Redmond, “An oxygen independent two-photon photosensitization mechanism,” Photochem. Photobiol. 59, 135–139 (1994).
[CrossRef] [PubMed]

T. J. Dougherty, “Yearly review: photodynamic therapy,” Photochem. Photobiol. 58, 895–900 (1993).
[CrossRef] [PubMed]

C. J. Gomer, “Preclinical examination of first and second generation photosensitizers used in photodynamic therapy [review],” Photochem. Photobiol. 54, 1093–1107 (1991).
[CrossRef] [PubMed]

B. W. Henderson, T. J. Dougherty, “How does photodynamic therapy work?” Photochem. Photobiol. 55, 145–157 (1992).
[CrossRef] [PubMed]

Phys. Med. Biol. (3)

B. C. Wilson, M. S. Patterson, “The physics of photodynamic therapy,” Phys. Med. Biol. 31, 327 (1986).
[CrossRef] [PubMed]

S. J. Madsen, M. S. Patterson, B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol. 37, 985–993 (1992).
[CrossRef] [PubMed]

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues. I. Multiple flux and transport theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

Pure Appl. Chem. (1)

D. Phillips, “The photochemistry of sensitizers for photodynamic therapy,” Pure Appl. Chem. 67, 117–126 (1995).
[CrossRef]

Other (10)

J. G. Levy, “Recent clinical results with benzoporphyrin derivative monoacid ring A,” presented at Twenty-third Annual meeting of the American Society of Photobiology, Washington, D.C. (May 1995).

T. Hasan, J. A. Parrish, “Photodynamic therapy of cancer,” in Cancer Medicine (Williams and Wilkins, Baltimore, Md., 1996), Chap. 50, pp. 739–751.

M. S. Patterson, B. C. Wilson, “A theoretical study of the influence of sensitizer photobleaching on depth of necrosis in photodynamic therapy,” in Free-Space Laser Communication Technologies VI, G. Mecherle, ed., Proc. SPIE2133, 208–219 (1994).

J. A. Barltrop, J. D. Coyle, Principles of Photochemistry (Wiley, Toronto, 1978), Chap. 3.

A. R. Morgan, D. Skalkos, “Second generation photosensitizers: where are we going and where should we be going?” in Future Directions and Applications in Photodynamic Therapy, SPIE Inst. Series6, 87–106.

B. C. Wilson, T. J. Farrell, M. S. Patterson, “An optical fibre-based reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo,” in Future Directions and Photodynamic Therapy, C. J. Gomer, ed., SPIE Inst. Series6, 219–232 (1990).

P. E. Hockberger, M. S. Ahmed, C. Lee, T. A. Skimina, W. Y. Hung, T. Siddique, “Imaging of hydrogen peroxide in cultured cells using carboxy-dichlorofluorescein,” in Optical Diagnostics of Living Cells and Biofluids, D. L. Farkas, R. C. Leif, A. V. Priezzhev, T. Asakuru, B. J. Tromburg, eds., Proc. SPIE2678, 129–140.

T. J. Farrell, B. C. Wilson, M. S. Patterson, R. Chow, “The dependence of photodynamic threshold dose on treatment parameters in normal rat liver in vivo,” in Optical Methods for Tumor Treatment and Early Diagnosis: Mechanisms and Techniques, T. J. Dougherty, ed., Proc. SPIE1426, 146–155 (1991).
[CrossRef]

B. W. Pogue, R. W. Redmond, T. Hasan, “Dosimetry for pulsed-laser photodynamic therapy,” in Laser-Tissue Interaction VII, S. L. Jacques, ed., Proc. SPIE2681, 130–139 (1996).
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992) Chap. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Geometry of the tissue-simulating dosimeter. (b) Fluorescence scanning of the dosimeter after irradiation.

Fig. 2
Fig. 2

(a) Fluorescence spectra of DCF-DA (10 µg/ml) with and without BPD-MA (2.5 µg/ml) in a 7% gelatin solid cuvette, for excitation at 485 nm (before and after irradiation with 80 J/cm2 cw light at 690 nm). The fluorescence before irradiation was identical for both cases. (b) Measurements of fluorescence versus total incident exposure for both DCF-DA (533 nm) and BPD-MA (696 nm). Concentrations were the same as in (a). (c) Data of DCF-DA fluorescence from (b) normalized by the relative concentration of BPD-MA, as measured by the fluorescence spectrum. The solid line is a linear regression fit to the data.

Fig. 3
Fig. 3

Extinction coefficient versus laser-pulsed fluence with 10-ns pulses at 690 nm. Measurements of transmission through 7.9 µM BPD-MA in 7% gelatin were used to calculate extinction relative to gelatin without photosensitizer.

Fig. 4
Fig. 4

(a) Measurements of reduced scattering coefficient versus TiO2 concentration for tissue-simulating dosimeters, at 690 nm, as calculated from diffuse reflectance measurements. Mixtures were 7% gelatin solids and 0.002% India ink solution in 20 ml PBS. The straight line is a linear regression fit to the data. (b) Measurements of absorption coefficient versus India ink concentration, as percent by volume. Composition as in (a) except with fixed 0.3 g of TiO2 in 20 ml. The straight line is a linear regression fit to the data.

Fig. 5
Fig. 5

(a) DCF-DA fluorescence versus depth in three dosimeters exposed to 96 ± 2 J/cm2 at 690 nm, two with BPD-MA present and one without. Average irradiances were 160 mW/cm2 pulsed and 110 mW/cm2 cw. The lines represent simulated absorbed doses, with using the same concentration of BPD-MA (2.5 µg/ml) and optical interaction coefficients (μ s ′ = 1.4 mm and μ a = 0.01 mm-1), normalized to best fit the two data sets with a single fitting parameter. (b) BPD-MA fluorescence versus depth for the same conditions as (a). The lines are calculated values for a photobleaching quantum yield of 2 × 10-5.

Fig. 6
Fig. 6

Measurements of DCF-DA fluorescence for three dosimeters, irradiated at 690 nm. The peak irradiances were 1.25 and 2.6 MW/cm2 for the pulsed light and 180 mW/cm2 for the cw. The incident exposure was 75 J/cm2 in all cases.

Fig. 7
Fig. 7

Dept for fixed DCF-DA flourscence of 2000 cps versus incident fluence. Each point represents a separate dosimeter, and the error bars represent the intensity and positioning uncertainties. The average irradiances were 110 mW/cm2 for cw and 150 mW/cm2 for the pulsed (i.e., 1.5 MW/cm2 peak irradiance).

Fig. 8
Fig. 8

Depth of penetration for DCF-DA flourescence of 2000 cps versus concentration of BPD-MA, for DCF-DA fixed at 10 µg/ml. Irradiation was at 690 nm with 1.4 MW/cm2 peak pulsed, 102 mW/cm2 cw, for a total incident exposure of 84 J/cm2 for both. The lines are calculated values for 5×1017 photons absorbed per cm3 using the same values of μ a and μ a ′ as the dosimeters.

Fig. 9
Fig. 9

Depth of penetration for DCF-DA flourescence of 2000 cps versus (a) a variation in the India ink concentration and (b) a variation in the TiO2 concentration in the dosimeters. The lines are calculated for 5×1017 photons absorbed per cubic centimeter for the same μ a and μ s ′ values. Irradiation was at 690 nm with 1.4 MW/cm2 peak pulsed and 102 mW/cm2 cw, for a total incident exposure of 84 J/cm2 for both cases.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

-Dr2Φr, t+μarΦr, t=S0r,
Φi,j,k=S0,i,j,k/D+Φi-1j,k+Φi+1,j,k+Φij-1,k+Φi,j+1,k+Φi,j,k-1+Φi,j,k+1/ΔL2/6/ΔL2+μa,i,j,k/D,
Pr=2.303ε0TΦr, tCr, tdt.
Pi,j,kn=2.303εΦi,j,knCi,j,knΔt,
μai,j,kn+1=μai,j,kn-2.303εϕPBPi,j,kn/NA,
Φr, t/t-cD2Φr, t+μar, tcΦr, t=cS0r, t,
Φi,j,kn+1=Φi,j,kn+Φi-1,j,kn+Φi+1,j,kn+Φi,j-1,kn+Φi,j+1,kn+Φi,j,k-1n+Φi,j,k+1n-6Φi,j,kn×cDΔt/ΔL2-μa,i,j,kcΔtΦi,j,kn+cΔtSo,i,j,kn
μai,j,kn+1=μai,j,kn-2.303εPi,j,kn/NA,
ΦDCF-DA=number of DCF-DA molecules oxidized/number of BPD-MA molecules excited=ΔFobs/FDCF/2.203εBPDCBPDEAlΔt,

Metrics