Abstract

We report on interferometric noise limitation of fiber-optic gas sensors with highly coherent lasers and wavelength modulation spectroscopy. Interference between signal wave and reflected waves causes signal fluctuation in the output, which limits the performance of the sensing system. Sensor resolution limited by interferometric noise is calculated for a fiber-optic gas sensor with the Q(6) absorption line of methane gas at approximately 1650 nm. The results are useful for system designers of this particular type of gas sensor.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).
  2. K. Uehara, H. Tai, “Remote detection of methane using a 1.66 µm diode laser,” Appl. Opt. 31, 809–814 (1992).
    [CrossRef] [PubMed]
  3. K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.
  4. V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
    [CrossRef]
  5. Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
    [CrossRef]
  6. W. Jin, G. Stewart, B. Culshaw, “Source noise limitation in an optical methane detection system using a broadband source,” Appl. Opt. 35, 2345–2349 (1995).
    [CrossRef]
  7. W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.
  8. W. Jin, G. Stewart, W. R. Philp, B. Culshaw, M. S. Demokan, “Limitation of absorption based fiber optic gas sensors by coherent reflections,” Appl. Opt. 36, 6251–6255 (1997).
    [CrossRef]
  9. Sensor Unlimited, Inc., Princeton, N.J., 1380-1980 DFB diode laser data sheet.
  10. P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988), Chap. 3.

1997

1995

1993

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

1992

1991

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

1987

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Aizawa, M.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Culshaw, B.

W. Jin, G. Stewart, W. R. Philp, B. Culshaw, M. S. Demokan, “Limitation of absorption based fiber optic gas sensors by coherent reflections,” Appl. Opt. 36, 6251–6255 (1997).
[CrossRef]

W. Jin, G. Stewart, B. Culshaw, “Source noise limitation in an optical methane detection system using a broadband source,” Appl. Opt. 35, 2345–2349 (1995).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.

Dakin, J. P.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Demokan, M. S.

Eberly, J. H.

P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988), Chap. 3.

Hegarty, J.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Jin, W.

W. Jin, G. Stewart, W. R. Philp, B. Culshaw, M. S. Demokan, “Limitation of absorption based fiber optic gas sensors by coherent reflections,” Appl. Opt. 36, 6251–6255 (1997).
[CrossRef]

W. Jin, G. Stewart, B. Culshaw, “Source noise limitation in an optical methane detection system using a broadband source,” Appl. Opt. 35, 2345–2349 (1995).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.

Maruyama, A.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Mencaglia, A.

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.

Milonni, P. W.

P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988), Chap. 3.

Nagai, H.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Okamoto, T.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Osawa, S.

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.

Phelan, P.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Philp, W. R.

W. Jin, G. Stewart, W. R. Philp, B. Culshaw, M. S. Demokan, “Limitation of absorption based fiber optic gas sensors by coherent reflections,” Appl. Opt. 36, 6251–6255 (1997).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.

Pinchbeck, D.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Shimose, Y.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

Stewart, G.

W. Jin, G. Stewart, W. R. Philp, B. Culshaw, M. S. Demokan, “Limitation of absorption based fiber optic gas sensors by coherent reflections,” Appl. Opt. 36, 6251–6255 (1997).
[CrossRef]

W. Jin, G. Stewart, B. Culshaw, “Source noise limitation in an optical methane detection system using a broadband source,” Appl. Opt. 35, 2345–2349 (1995).
[CrossRef]

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.

Tai, H.

K. Uehara, H. Tai, “Remote detection of methane using a 1.66 µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.

Uchida, M.

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.

Uehara, K.

K. Uehara, H. Tai, “Remote detection of methane using a 1.66 µm diode laser,” Appl. Opt. 31, 809–814 (1992).
[CrossRef] [PubMed]

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.

Wade, C. A.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Weldon, V.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

Wykes, J. S.

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Yamamoto, K.

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.

Appl. Opt.

Electron. Lett.

V. Weldon, P. Phelan, J. Hegarty, “Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 µm,” Electron. Lett. 29, 560–561 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Shimose, T. Okamoto, A. Maruyama, M. Aizawa, H. Nagai, “Remote sensing of methane gas by differential absorption measurement using a wavelength-tunable DFB LD,” IEEE Photon. Technol. Lett. 3, 86–87 (1991).
[CrossRef]

J. Opt. Sensors

J. P. Dakin, C. A. Wade, D. Pinchbeck, J. S. Wykes, “A novel optical fibre methane sensor,” J. Opt. Sensors 2, 261–267 (1987).

Other

K. Yamamoto, H. Tai, M. Uchida, S. Osawa, K. Uehara, “Long distance simultaneous detection of methane and acetylene by using diode lasers in combination with optical fibers,” in Proceedings of Eighth Optical Fiber Sensors Conference, Monterey, Calif., 1992, (IEEE, New York, 1992, pp. 333–336.

Sensor Unlimited, Inc., Princeton, N.J., 1380-1980 DFB diode laser data sheet.

P. W. Milonni, J. H. Eberly, Lasers (Wiley, New York, 1988), Chap. 3.

W. R. Philp, W. Jin, A. Mencaglia, G. Stewart, B. Culshaw, “Interferometric noise in frequency modulated optical gas sensors,” in Proceedings of 21st Australian Conference on Optical Fibre Technology, Gold Coast, Queensland, Australia, 1996 (Institute of Radio and Electronic Engineers, Sydney, 1996, pp. 185–188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Principle of wavelength modulation spectroscopy: I1 and I2, amplitudes of the first- and the second-harmonic signals SM, single mode.

Fig. 2
Fig. 2

Scale factor versus modulation index, x = ν Lm ν: (a) for the second-harmonic detection technique, k versus x; (b) for the ratio-detection technique, k/x versus x.

Fig. 3
Fig. 3

Second-order reflection pairs in a transmission-type sensor.

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

it=i0+im sin ωt,
ν=νL0+νLm sin ωt,
Iit=I01+η sin ωt,
It=I01+η sin ωtexp-2ανLO+νLm sin ωtCL,
ItI01+η sin ωt-2ανLO+νLm sin ωtCL,
exp-2ανCL1-2ανCL
η sin ωt×2ανLO+νLm sin ωtCL.
αν=α01+ν-νgδν2,
It=I01+η sin ωt-2α0CL1+νLO-νg+νLm sin ωtδν2.
It=I01+η sin ωt-2α0CL1+x2 sin2 ωt,
I1=I0η,
I2=-2kα0CLI0,
k=22+x2-21+x21/2x21+x21/2.
x=2+221/22.2.
I2I1=-2kηα0CL.
I2mI1m=-2kηα0CmL=I21+δ2I11+δ1-2kηα0CL1+δ2-δ1,
1+δ21+δ11+δ2-δ1.
Cm-CCδ2-δ1.
ΔCC=C-CmC=δ2-δ1.
Eit=I01+η sin ωt1/2×expj2πνLOt+νLm0tsin ωdu.
Et=I01+η sin ωt1/2×exp-ανLO+νLm sin ωtCL×expj2πνLOt+νLm0tsin ωudu+ϕνLO+νLm sin ωt,
Ert=α1α2I0(1+η sin ωt-τ1/2×exp-ανLO+νLm sin ωt-τCL×expj2πνLOt-τ+νLm0t-τsin ωudu+ϕνLO+νLm sin ωt-τ,
It=Et+Ert2.
Int=2ReEtEr*t=2α1α2I01+η sin ωt-τ1+η sin ωt)1/2×exp-ανLO+νLm sin ωt-τ+ανLO+νLm sin ωtCLcos2πνLOτ+νLm×t-rtsin ωudu+ϕνLO+νLm sin ωt-ϕνLO+νLm sin ωt-τ.
1+η sin ωt-τ1+η sin ωt1/21+η sin ωt,
exp-ανLO+νLm sin ωt-τ+ανLO+νLm sin ωtCL1,
Int2α1α2I01+η sin ωtcosψ+ζ sin ωt-τ2.
ψ=2πνLOτ,
2πνLmt-τtsin ωudu=4πνLmωsinωτ2sin ωt-τ2,
ζ=4πνLmωsinωτ24πνLmωωτ2=2πνLmτ.
ϕνLO+νLm sin ωt-ϕνLO+νLm sin ωt-τ,
cosψ+ζ sin ωt-τ/2=cos ψJ0ζ+2J2ζcos 2ωt-τ/2+2J4ζcos 4ωt-τ/2+-sin ψ2J1ζsin ωt-τ/2+2J3ζ×sin 3ωt-τ/2+,
I1nt-2α1α2I02 sin ψJ1ζ-η×cos ψJ0ζ-J2ζsin ωt,
I2nt-2α1α2I0-2cos ψJ2ζsin 2ωt-η×sin ψJ1ζ-J3ζcos 2ωt.
I1n-4α1α2I0 sin ψJ1ζ,
I2n4α1α2I0 cos ψJ2ζ.
δ1=I1nI1=-4α1α2 sin ψJ1ζη,
δ2=I2nI2=-4α1α2 cos ψJ2ζ2kα0CL.
ΔCC=4α2J1ζηsin ψ-J2ζ2kα0CLcos ψ.
Cmin,1=2α2J2ζkα0L.
ΔCC=2α22 sin ψJ1ζη-cos ψJ0ζ-η sin ψJ1ζ-J3ζ2kα0CL.
Cmin,2=2α2J1ζ-J3ζη2kα0L.
Ert=α1α2I01+η sin ωt-τ1/2×exp-3ανLO+νLm sin ωt-τCL×expj2πνLOt-τ+νLm×0t-τsin ωudu+3ϕνLO+νLm sin ωt-τ.
Cmin,1=2α2J2ζk,
Cmin,2=0.1α2J1ζ-J3ζxk.
ν-νgν, νg,
Et=E0 expανCLexpjΦν,
nr=1+α0Cc4πνν-νgδν1+ν-νgδν2.
Φν=2πLνc+2α0CLν-νgδν1+ν-νgδν2.
Φν=2πνLOLc+2πνLm0L/csin ωuduc+2α0CLνLm sin ωtδν1+νLm sin ωtδν2.

Metrics