Abstract

The method as well as an appropriate instrumentation for measuring phase changes of reflected light is described. The phase changes on samples of Au, Al, Ag, and Cr evaporated films are measured for five wavelengths (λ) from 442 to 633 nm, with respect to the phase change at the glass–air interface, where it should be zero. The measured results for the Au film are in fairly good agreement with values calculated by use of optical constants from a handbook or the complex refractive index measured by an ellipsometer. The phase changes for Al and Ag films are different from calculated values by ∼5° or a shift length of 4.4 nm at λ = 633 nm, while those of the Cr film show large shifts as high as 16° or a shift length of 9.8 nm at λ = 442 nm.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20, 610–618 (1981).
    [CrossRef] [PubMed]
  2. B. Bhushan, J. C. Wyant, C. L. Koliopoulos, “Measurement of surface topography of magnetic tapes by Mirau interferometry,” Appl. Opt. 24, 1489–1497 (1985).
    [CrossRef] [PubMed]
  3. S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films, 1st ed. (Oxford U. Press, London, 1949), pp. 96–134.
  4. E. L. Church, S. R. Lange, “Structure effects in optical surface metrology,” in Surface Characterization and Testing, K. Creath, ed., Proc. SPIE680, 124–130 (1986).
    [CrossRef]
  5. T. Doi, K. Toyoda, Y. Tanimura, “Measurement of phase change of light on reflection,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. SPIE1720, 436–443 (1992).
    [CrossRef]
  6. T. McWaid, T. Vorburger, J. F. Song, D. Chandler-Horowitz, “The effect of thin films on interferometric step height measurements,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 2–13 (1992).
  7. R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
    [CrossRef]
  8. J. M. Bennett, “Precise method for measuring the absolute phase change on reflection,” J. Opt. Soc. Am. 54, 612–624 (1964).
    [CrossRef]
  9. G. Hass, L. Hadley, “Optical properties of metals,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972), Chap. 6, pp. 118–138.
  10. J. H. Weaver, “Optical properties of metals,” in Handbook of Chemistry and Physics, 65th ed., R. C. Weast, ed. (CRC Press, Boca Raton, Fla., 1984), p. E–364.
  11. G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  12. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983).
    [CrossRef] [PubMed]

1990 (1)

1985 (1)

1983 (1)

1981 (1)

1972 (1)

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

1964 (1)

Bennett, J. M.

Bhushan, B.

Burow, R.

Chandler-Horowitz, D.

T. McWaid, T. Vorburger, J. F. Song, D. Chandler-Horowitz, “The effect of thin films on interferometric step height measurements,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 2–13 (1992).

Chim, S. S. C.

Church, E. L.

E. L. Church, S. R. Lange, “Structure effects in optical surface metrology,” in Surface Characterization and Testing, K. Creath, ed., Proc. SPIE680, 124–130 (1986).
[CrossRef]

Clapham, P. B.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

Doi, T.

T. Doi, K. Toyoda, Y. Tanimura, “Measurement of phase change of light on reflection,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. SPIE1720, 436–443 (1992).
[CrossRef]

Downs, M. J.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

Elssner, K. E.

Grzanna, J.

Hadley, L.

G. Hass, L. Hadley, “Optical properties of metals,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972), Chap. 6, pp. 118–138.

Hass, G.

G. Hass, L. Hadley, “Optical properties of metals,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972), Chap. 6, pp. 118–138.

King, R. J.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

Kino, G. S.

Koliopoulos, C. L.

Lange, S. R.

E. L. Church, S. R. Lange, “Structure effects in optical surface metrology,” in Surface Characterization and Testing, K. Creath, ed., Proc. SPIE680, 124–130 (1986).
[CrossRef]

McWaid, T.

T. McWaid, T. Vorburger, J. F. Song, D. Chandler-Horowitz, “The effect of thin films on interferometric step height measurements,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 2–13 (1992).

Merkel, K.

Raine, K. W.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

Schwider, J.

Sommargren, G. E.

Song, J. F.

T. McWaid, T. Vorburger, J. F. Song, D. Chandler-Horowitz, “The effect of thin films on interferometric step height measurements,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 2–13 (1992).

Spolaczyk, R.

Talim, S. P.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

Tanimura, Y.

T. Doi, K. Toyoda, Y. Tanimura, “Measurement of phase change of light on reflection,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. SPIE1720, 436–443 (1992).
[CrossRef]

Tolansky, S.

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films, 1st ed. (Oxford U. Press, London, 1949), pp. 96–134.

Toyoda, K.

T. Doi, K. Toyoda, Y. Tanimura, “Measurement of phase change of light on reflection,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. SPIE1720, 436–443 (1992).
[CrossRef]

Vorburger, T.

T. McWaid, T. Vorburger, J. F. Song, D. Chandler-Horowitz, “The effect of thin films on interferometric step height measurements,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 2–13 (1992).

Weaver, J. H.

J. H. Weaver, “Optical properties of metals,” in Handbook of Chemistry and Physics, 65th ed., R. C. Weast, ed. (CRC Press, Boca Raton, Fla., 1984), p. E–364.

Wyant, J. C.

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Phys. E (1)

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A comparison of methods for accurate film thickness measurement,” J. Phys. E 5, 445–449 (1972).
[CrossRef]

Other (6)

G. Hass, L. Hadley, “Optical properties of metals,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972), Chap. 6, pp. 118–138.

J. H. Weaver, “Optical properties of metals,” in Handbook of Chemistry and Physics, 65th ed., R. C. Weast, ed. (CRC Press, Boca Raton, Fla., 1984), p. E–364.

S. Tolansky, Multiple-Beam Interferometry of Surfaces and Films, 1st ed. (Oxford U. Press, London, 1949), pp. 96–134.

E. L. Church, S. R. Lange, “Structure effects in optical surface metrology,” in Surface Characterization and Testing, K. Creath, ed., Proc. SPIE680, 124–130 (1986).
[CrossRef]

T. Doi, K. Toyoda, Y. Tanimura, “Measurement of phase change of light on reflection,” in International Symposium on Optical Fabrication, Testing, and Surface Evaluation, J. Tsujiuchi, ed., Proc. SPIE1720, 436–443 (1992).
[CrossRef]

T. McWaid, T. Vorburger, J. F. Song, D. Chandler-Horowitz, “The effect of thin films on interferometric step height measurements,” in Interferometry: Surface Characterization and Testing, K. Creath, J. E. Greivenkamp, eds., Proc. SPIE1776, 2–13 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Reflection of light at normal incidence on a boundary between two media. (b) Definition of the phase change of light.

Fig. 2
Fig. 2

Cross section of the sample used to measure the phase change of light on reflection from Au film.

Fig. 3
Fig. 3

Schematic diagram of the microscope interferometer used for measuring the phase change of reflected light.

Fig. 4
Fig. 4

Phase distribution of reflected light on the glass plate measured by microscope interferometer.

Fig. 5
Fig. 5

(a) Interference fringe pattern produced by microscope interferometer. The shift lengths of the fringes correspond to the phase change of reflected light (β = π - ρ) from Au. (b) Measured phase changes of reflected light from Au at wavelengths of 633, 589, 532, 488, and 442 nm. ρ = π - β is shown instead of the phase change (β) to emphasize the difference in the phase change among five wavelengths.

Fig. 6
Fig. 6

Wavelength dependence of the phase change of light (π - ρ) on reflection from Au, Al, Ag, and Cr. The symbols denote the measured phase changes. The curves denote the theoretical values calculated from optical constants in the handbooks.

Tables (1)

Tables Icon

Table 1 Comparison of the Phase Changes Given by Experiment and by Calculations Based on Optical Constants in Handbooks and Those Measured by Ellipsometry

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r=Er/Ei=-n1-n0/n1+n0.
r=n02-n12+k12+2in0k1/n0+n12+k12=a+ib.
β=π-ρ,ρ=tan-12n0k1/n12+k12-n02,
0ρπ/2.
ρ/2=λ ρ/4π,
ϕ=tan-1I4-I2/I1-I3.
Δρ/2=λΔρ/4π+Δλρ/4π.

Metrics