Abstract

A nonresonant photoacoustic cell, excited by 10-µs CO2 laser pulses, is compared with conventional resonant cells excited with modulated cw radiation. By combining high sensitivity with small volume and small surface area, the nonresonant cell shows superior performance in measurements of time-dependent concentrations. The potential of the cell is illustrated by measurements of the time evolution of adsorption and desorption of ammonia molecules from surfaces of quartz and stainless steel.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hess, ed., Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989).
  2. J. Henningsen, M. Hammerich, A. Olafsson, “Mode structure of hollow dielectric waveguide lasers,” Appl. Phys. 51, 272–284 (1990).
    [CrossRef]
  3. hitran-PC, distributed by ONTAR Corporation, 9 Village Way, North Andover, Mass. 01845-2000.
  4. F. Harren, “The photoacoustic effect, refined and applied to biological problems,” Ph.D. dissertation (University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands, 1988).
  5. F. Bijnen, “Refined CO-laser photoacoustic trace gas detection: observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, Netherlands, 1995).
  6. R. Gerlach, N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
    [CrossRef]
  7. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  8. C. Brand, A. Winkler, P. Hess, A. Miklós, Z. Bozóki, J. Sneider, “Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3265 (1995).
    [CrossRef] [PubMed]
  9. S. M. Beck, “Cell coatings to minimize sample (NH3 and N2H4) adsorption for low-level photoacoustic detection,” Appl. Opt. 24, 1761–1763 (1985).
    [CrossRef]
  10. H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
    [CrossRef]
  11. G. Baldacchini, A. Bellatreccia, F. D’Amato, Adsorbimento di ammonia in celle per spettroscopia molecolare, , (Ente Nazionale Energie Alternative, Direzione Centrale Relazioni, Rome, 1993).
  12. M. G. Mennen, E. M. van Putten, B. G. van Elzakker, “Effects of sampling tube on measurements of ammonia concentrations in ambient air” (Air Research Laboratory, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 1995).
  13. T. E. Madey, C. Benndorf, S. Semancik, in Kinetics of Surface Reactions, M. Grunze, H. J. Kreuzer, eds., Vol. 8 of Springer Series in Surface Science (Springer-Verlag, Berlin, 1986).

1995 (1)

1990 (2)

J. Henningsen, M. Hammerich, A. Olafsson, “Mode structure of hollow dielectric waveguide lasers,” Appl. Phys. 51, 272–284 (1990).
[CrossRef]

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

1985 (1)

1980 (1)

R. Gerlach, N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Amer, N. M.

R. Gerlach, N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Baldacchini, G.

G. Baldacchini, A. Bellatreccia, F. D’Amato, Adsorbimento di ammonia in celle per spettroscopia molecolare, , (Ente Nazionale Energie Alternative, Direzione Centrale Relazioni, Rome, 1993).

Beck, S. M.

Bellatreccia, A.

G. Baldacchini, A. Bellatreccia, F. D’Amato, Adsorbimento di ammonia in celle per spettroscopia molecolare, , (Ente Nazionale Energie Alternative, Direzione Centrale Relazioni, Rome, 1993).

Benndorf, C.

T. E. Madey, C. Benndorf, S. Semancik, in Kinetics of Surface Reactions, M. Grunze, H. J. Kreuzer, eds., Vol. 8 of Springer Series in Surface Science (Springer-Verlag, Berlin, 1986).

Bicanic, D.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
[CrossRef]

Bijnen, F.

F. Bijnen, “Refined CO-laser photoacoustic trace gas detection: observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, Netherlands, 1995).

Bozóki, Z.

Brand, C.

D’Amato, F.

G. Baldacchini, A. Bellatreccia, F. D’Amato, Adsorbimento di ammonia in celle per spettroscopia molecolare, , (Ente Nazionale Energie Alternative, Direzione Centrale Relazioni, Rome, 1993).

Gerlach, R.

R. Gerlach, N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Hammerich, M.

J. Henningsen, M. Hammerich, A. Olafsson, “Mode structure of hollow dielectric waveguide lasers,” Appl. Phys. 51, 272–284 (1990).
[CrossRef]

Harren, F.

F. Harren, “The photoacoustic effect, refined and applied to biological problems,” Ph.D. dissertation (University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands, 1988).

Henningsen, J.

J. Henningsen, M. Hammerich, A. Olafsson, “Mode structure of hollow dielectric waveguide lasers,” Appl. Phys. 51, 272–284 (1990).
[CrossRef]

Hess, P.

Jalink, H.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
[CrossRef]

Madey, T. E.

T. E. Madey, C. Benndorf, S. Semancik, in Kinetics of Surface Reactions, M. Grunze, H. J. Kreuzer, eds., Vol. 8 of Springer Series in Surface Science (Springer-Verlag, Berlin, 1986).

Mennen, M. G.

M. G. Mennen, E. M. van Putten, B. G. van Elzakker, “Effects of sampling tube on measurements of ammonia concentrations in ambient air” (Air Research Laboratory, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 1995).

Meyer, P. L.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Miklós, A.

Olafsson, A.

J. Henningsen, M. Hammerich, A. Olafsson, “Mode structure of hollow dielectric waveguide lasers,” Appl. Phys. 51, 272–284 (1990).
[CrossRef]

Sauren, H.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
[CrossRef]

Semancik, S.

T. E. Madey, C. Benndorf, S. Semancik, in Kinetics of Surface Reactions, M. Grunze, H. J. Kreuzer, eds., Vol. 8 of Springer Series in Surface Science (Springer-Verlag, Berlin, 1986).

Sigrist, M. W.

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Sneider, J.

Tonk, W.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
[CrossRef]

van Elzakker, B. G.

M. G. Mennen, E. M. van Putten, B. G. van Elzakker, “Effects of sampling tube on measurements of ammonia concentrations in ambient air” (Air Research Laboratory, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 1995).

van Hove, B.

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
[CrossRef]

van Putten, E. M.

M. G. Mennen, E. M. van Putten, B. G. van Elzakker, “Effects of sampling tube on measurements of ammonia concentrations in ambient air” (Air Research Laboratory, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 1995).

Winkler, A.

Appl. Opt. (2)

Appl. Phys. (2)

J. Henningsen, M. Hammerich, A. Olafsson, “Mode structure of hollow dielectric waveguide lasers,” Appl. Phys. 51, 272–284 (1990).
[CrossRef]

R. Gerlach, N. M. Amer, “Brewster window and windowless resonant spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Other (8)

H. Sauren, B. van Hove, W. Tonk, H. Jalink, D. Bićanić “On the adsorption properties of ammonia to various surfaces,” in Monitoring of Gaseous Pollutants with Tunable Diode Lasers (Kluwer, Dordrecht, 1989).
[CrossRef]

G. Baldacchini, A. Bellatreccia, F. D’Amato, Adsorbimento di ammonia in celle per spettroscopia molecolare, , (Ente Nazionale Energie Alternative, Direzione Centrale Relazioni, Rome, 1993).

M. G. Mennen, E. M. van Putten, B. G. van Elzakker, “Effects of sampling tube on measurements of ammonia concentrations in ambient air” (Air Research Laboratory, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 1995).

T. E. Madey, C. Benndorf, S. Semancik, in Kinetics of Surface Reactions, M. Grunze, H. J. Kreuzer, eds., Vol. 8 of Springer Series in Surface Science (Springer-Verlag, Berlin, 1986).

hitran-PC, distributed by ONTAR Corporation, 9 Village Way, North Andover, Mass. 01845-2000.

F. Harren, “The photoacoustic effect, refined and applied to biological problems,” Ph.D. dissertation (University of Nijmegen, Toernooiveld, Nijmegen, The Netherlands, 1988).

F. Bijnen, “Refined CO-laser photoacoustic trace gas detection: observation of anaerobic processes in insects, soil and fruit,” Ph.D. dissertation (University of Nijmegen, Nijmegen, Netherlands, 1995).

P. Hess, ed., Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Topics in Current Physics (Springer-Verlag, Berlin, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Two nonresonant photoacoustic cells mounted for measuring concentration differences.

Fig. 2
Fig. 2

Four signals generated in the laser scan mode: laser power transmitted through the two measurement cells, photoacoustic signal from the reference cell, photoacoustic magnitude from 75 ppm NH3 in N2, and photoacoustic magnitude normalized with respect to the laser power.

Fig. 3
Fig. 3

Calculated line profile for the sR (5, K) multiplet at various pressures. Spectral window ±200 MHz around the 9R30 laser line center and working line (dashed line) 100 MHz below the laser line center are indicated.

Fig. 4
Fig. 4

Magnitude and phase of photoacoustic signal from 1 ppm NH3 in N2 and from window absorption.

Fig. 5
Fig. 5

Pressure-dependent cell sensitivity for nonresonant cell.

Fig. 6
Fig. 6

Noise for 300 mbars of purge gas as a function of flow rate, showing onset of turbulence above 200 cm3/min STP.

Fig. 7
Fig. 7

Adsorption of NH3 on quartz at 1 ppm. The three curves show the concentration cin at the input and cout at the output of the 230-cm-long tube and their difference. The lower graph is an expanded version of the first 1000 s.

Fig. 8
Fig. 8

(a) Adsorption of NH3 at 50 ppm on stainless steel SS316, showing improvement in signal-to-noise ratio for difference measurements as compared with the individual signals. (b) Desorption and readsorption following thermal cycling between 25 and 180 °C.

Fig. 9
Fig. 9

Desorption (left) from SS316 following temperature increase from 25 to 180 °C and (right) from SS304 following a temperature increase from 25 to 120 °C. Upper graphs show the individual signals, while lower graphs show their difference.

Fig. 10
Fig. 10

Calculated gas phase concentration at locations (curve B) x = 67 cm, (curve C) x = 133 cm, and (curve D) at the exit x = 230 cm, using (curves A) the measured concentration at the entrance cell cin(x = 0,t) as boundary condition. Curve D′ is the measured exit concentration cout(x = 230, t).

Tables (1)

Tables Icon

Table 1 Comparison of Different Resonant Cells with the Present Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nloss=0cin(t)-cout(t)NL273.15Tapap0×Qdt-cv0NLp/p0T0/TV,
cvt=-ucvx-4dcst,
cst=k1cvcs0-cs-k2cs,

Metrics