Abstract

A modeling and simulation study of the limits of remote detection by passive IR has led to a new concept for the remote detection of hazardous clouds. A passive IR signature model was developed with the Edgewood Research, Development, and Engineering Center IR spectral data bases used as input for chemicals and biologicals and with the atmospheric transmittance model used for Modtran. The cloud travel and dispersion model, VLStrack, was used to simulate chemical and biological clouds. An easily applied spectral discrimination technique was developed with a standard Mathematica version of linear programming. All these were melded with Mathematica to produce images of three threat clouds: Sarin, mustard, and an unnamed biological. The hazardous cloud imager is a spatially scanning Fourier transform IR on the same level of complexity as conventional remote detectors, but is capable of greater sensitivity and moving operation.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Hodges, “Remote sensing chemical agent alarm,” , contract M67854-91-C-0054 (Project Manager for NBC Defense Systems, Attn: AMCPM-NN, Aberdeen Proving Ground, Md. 21010, 1991).
  2. S. R. Horman, “Remote identification of CW agents by spectral techniques,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1976).
  3. R. T. Kroutil, E. Wittenbreder, J. Carrico, “Target acquisition of chemical clouds by means of a imaging multispectral scanner,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1986).
  4. R. E. Warren, “Algorithm for image enhancement and detection of chemical vapors using a thermal imager,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1989).
  5. L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).
  6. M. L. G. Althouse, C.-I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
    [CrossRef]
  7. T. Smithson, “Imaging emission spectroscopy,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 530–531 (1994).
    [CrossRef]
  8. F. Hapgood, “Up the infinite corridor: MIT and the technical imagination,” in The Vision Chip (Addison-Wesley, Reading, Mass., 1993).
  9. D. Naumann, C. P. Schultz, D. Helm, “What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells?” Infrared Spectroscopy Biomolecular, H. H. Mantsch, D. Chapman, eds. (Wiley-Liss, New York, 1996), pp. 279–310.
  10. D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1985).
  11. D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared using MODTRAN,” Appl. Opt. 35, 6090–6098 (1996).
    [CrossRef] [PubMed]
  12. F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  13. G. H. Suits, “Natural sources,” in The Infrared Handbook, Vol. PM02, W. L. Wolfe, G. L. Zississ, eds. (SPIE Press, Bellingham, Wash., 1993), pp. 3–71–3–73.
  14. P. R. Griffiths, “FT-IR spectrometry at low resolution: how low can you go?” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, Proc. SPIE2089, 2–8, (1994).
    [CrossRef]
  15. D. F. Flanigan, “Hazardous cloud imaging: an in-depth study,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1997).
  16. W. J. Barrett, E. B. Dismukes, “Infrared spectral studies of agents and field contaminants,” , contract DAAA15-68-C-0154 (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1969).
  17. H. W. Walter, D. F. Flanigan, “Detection of atmospheric pollutants,” Appl. Opt. 14, 1423–1428 (1975).
    [CrossRef] [PubMed]
  18. R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Remote infrared vapor detection of volatile organic compounds,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 24–31 (1994).
    [CrossRef]
  19. R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Automated detection of acetone, methyl ethyl keytone, and sulfur hexafluoride by direct analysis of Fourier transform infrared interferograms,” Appl. Spectrosc. 48, 724–732 (1994).
    [CrossRef]
  20. M. J. Mattu, G. W. Small, “Quantitative analysis of bandpass-filtered Fourier transform infrared interferograms,” Anal. Chem. 67, 2269–2278 (1995).
    [CrossRef] [PubMed]
  21. T. J. Bauer, R. L. Gibbs, “Software User’s Manual for the Chemical, Biological Agent Vapor, Liquid, and Solid Tracking (VLSTRACK) Computer Model,” Version 1.6.1, (Available from Commander, attn: B51, NSWC, 17320 Dahlgren Rd., Dahlgren, Va. 22448-5100, 1995).
  22. D. W. Hoock, “Modeling time dependent obscuration for simulating imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991).
    [CrossRef]

1996 (1)

1995 (1)

M. J. Mattu, G. W. Small, “Quantitative analysis of bandpass-filtered Fourier transform infrared interferograms,” Anal. Chem. 67, 2269–2278 (1995).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

M. L. G. Althouse, C.-I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

1975 (1)

Abreu, L.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Althouse, M. L. G.

M. L. G. Althouse, C.-I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

Anderson, G.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Barrett, W. J.

W. J. Barrett, E. B. Dismukes, “Infrared spectral studies of agents and field contaminants,” , contract DAAA15-68-C-0154 (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1969).

Bauer, T. J.

T. J. Bauer, R. L. Gibbs, “Software User’s Manual for the Chemical, Biological Agent Vapor, Liquid, and Solid Tracking (VLSTRACK) Computer Model,” Version 1.6.1, (Available from Commander, attn: B51, NSWC, 17320 Dahlgren Rd., Dahlgren, Va. 22448-5100, 1995).

Carr, L.

L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Carrico, J.

R. T. Kroutil, E. Wittenbreder, J. Carrico, “Target acquisition of chemical clouds by means of a imaging multispectral scanner,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1986).

Chang, C.-I.

M. L. G. Althouse, C.-I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

Chetwynd, J.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Clough, S.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Combs, R. J.

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Automated detection of acetone, methyl ethyl keytone, and sulfur hexafluoride by direct analysis of Fourier transform infrared interferograms,” Appl. Spectrosc. 48, 724–732 (1994).
[CrossRef]

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Remote infrared vapor detection of volatile organic compounds,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 24–31 (1994).
[CrossRef]

Dismukes, E. B.

W. J. Barrett, E. B. Dismukes, “Infrared spectral studies of agents and field contaminants,” , contract DAAA15-68-C-0154 (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1969).

Flanigan, D. F.

D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared using MODTRAN,” Appl. Opt. 35, 6090–6098 (1996).
[CrossRef] [PubMed]

H. W. Walter, D. F. Flanigan, “Detection of atmospheric pollutants,” Appl. Opt. 14, 1423–1428 (1975).
[CrossRef] [PubMed]

D. F. Flanigan, “Hazardous cloud imaging: an in-depth study,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1997).

D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1985).

Fletcher, L.

L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Gallery, W.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Gibbs, R. L.

T. J. Bauer, R. L. Gibbs, “Software User’s Manual for the Chemical, Biological Agent Vapor, Liquid, and Solid Tracking (VLSTRACK) Computer Model,” Version 1.6.1, (Available from Commander, attn: B51, NSWC, 17320 Dahlgren Rd., Dahlgren, Va. 22448-5100, 1995).

Griffiths, P. R.

P. R. Griffiths, “FT-IR spectrometry at low resolution: how low can you go?” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, Proc. SPIE2089, 2–8, (1994).
[CrossRef]

Hapgood, F.

F. Hapgood, “Up the infinite corridor: MIT and the technical imagination,” in The Vision Chip (Addison-Wesley, Reading, Mass., 1993).

Helm, D.

D. Naumann, C. P. Schultz, D. Helm, “What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells?” Infrared Spectroscopy Biomolecular, H. H. Mantsch, D. Chapman, eds. (Wiley-Liss, New York, 1996), pp. 279–310.

Hodges, B. W.

B. W. Hodges, “Remote sensing chemical agent alarm,” , contract M67854-91-C-0054 (Project Manager for NBC Defense Systems, Attn: AMCPM-NN, Aberdeen Proving Ground, Md. 21010, 1991).

Holland, P.

L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Hoock, D. W.

D. W. Hoock, “Modeling time dependent obscuration for simulating imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991).
[CrossRef]

Horman, S. R.

S. R. Horman, “Remote identification of CW agents by spectral techniques,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1976).

Knapp, R. B.

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Automated detection of acetone, methyl ethyl keytone, and sulfur hexafluoride by direct analysis of Fourier transform infrared interferograms,” Appl. Spectrosc. 48, 724–732 (1994).
[CrossRef]

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Remote infrared vapor detection of volatile organic compounds,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 24–31 (1994).
[CrossRef]

Kneizys, F.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Kroutil, R. T.

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Automated detection of acetone, methyl ethyl keytone, and sulfur hexafluoride by direct analysis of Fourier transform infrared interferograms,” Appl. Spectrosc. 48, 724–732 (1994).
[CrossRef]

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Remote infrared vapor detection of volatile organic compounds,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 24–31 (1994).
[CrossRef]

R. T. Kroutil, E. Wittenbreder, J. Carrico, “Target acquisition of chemical clouds by means of a imaging multispectral scanner,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1986).

Leonelli, J.

L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Mattu, M. J.

M. J. Mattu, G. W. Small, “Quantitative analysis of bandpass-filtered Fourier transform infrared interferograms,” Anal. Chem. 67, 2269–2278 (1995).
[CrossRef] [PubMed]

McPherrin, D.

L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Naumann, D.

D. Naumann, C. P. Schultz, D. Helm, “What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells?” Infrared Spectroscopy Biomolecular, H. H. Mantsch, D. Chapman, eds. (Wiley-Liss, New York, 1996), pp. 279–310.

Schultz, C. P.

D. Naumann, C. P. Schultz, D. Helm, “What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells?” Infrared Spectroscopy Biomolecular, H. H. Mantsch, D. Chapman, eds. (Wiley-Liss, New York, 1996), pp. 279–310.

Selby, J.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E.

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Small, G. W.

M. J. Mattu, G. W. Small, “Quantitative analysis of bandpass-filtered Fourier transform infrared interferograms,” Anal. Chem. 67, 2269–2278 (1995).
[CrossRef] [PubMed]

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Automated detection of acetone, methyl ethyl keytone, and sulfur hexafluoride by direct analysis of Fourier transform infrared interferograms,” Appl. Spectrosc. 48, 724–732 (1994).
[CrossRef]

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Remote infrared vapor detection of volatile organic compounds,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 24–31 (1994).
[CrossRef]

Smithson, T.

T. Smithson, “Imaging emission spectroscopy,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 530–531 (1994).
[CrossRef]

Suits, G. H.

G. H. Suits, “Natural sources,” in The Infrared Handbook, Vol. PM02, W. L. Wolfe, G. L. Zississ, eds. (SPIE Press, Bellingham, Wash., 1993), pp. 3–71–3–73.

Walter, H. W.

Warren, R. E.

R. E. Warren, “Algorithm for image enhancement and detection of chemical vapors using a thermal imager,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1989).

Wittenbreder, E.

R. T. Kroutil, E. Wittenbreder, J. Carrico, “Target acquisition of chemical clouds by means of a imaging multispectral scanner,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1986).

Anal. Chem. (1)

M. J. Mattu, G. W. Small, “Quantitative analysis of bandpass-filtered Fourier transform infrared interferograms,” Anal. Chem. 67, 2269–2278 (1995).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Opt. Eng. (1)

M. L. G. Althouse, C.-I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

Other (17)

T. Smithson, “Imaging emission spectroscopy,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 530–531 (1994).
[CrossRef]

F. Hapgood, “Up the infinite corridor: MIT and the technical imagination,” in The Vision Chip (Addison-Wesley, Reading, Mass., 1993).

D. Naumann, C. P. Schultz, D. Helm, “What can infrared spectroscopy tell us about the structure and composition of intact bacterial cells?” Infrared Spectroscopy Biomolecular, H. H. Mantsch, D. Chapman, eds. (Wiley-Liss, New York, 1996), pp. 279–310.

D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1985).

B. W. Hodges, “Remote sensing chemical agent alarm,” , contract M67854-91-C-0054 (Project Manager for NBC Defense Systems, Attn: AMCPM-NN, Aberdeen Proving Ground, Md. 21010, 1991).

S. R. Horman, “Remote identification of CW agents by spectral techniques,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1976).

R. T. Kroutil, E. Wittenbreder, J. Carrico, “Target acquisition of chemical clouds by means of a imaging multispectral scanner,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1986).

R. E. Warren, “Algorithm for image enhancement and detection of chemical vapors using a thermal imager,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1989).

L. Carr, L. Fletcher, P. Holland, J. Leonelli, D. McPherrin, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

F. Kneizys, E. Shettle, L. Abreu, J. Chetwynd, G. Anderson, W. Gallery, J. Selby, S. Clough, “Users Guide to lowtran 7,” . U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

G. H. Suits, “Natural sources,” in The Infrared Handbook, Vol. PM02, W. L. Wolfe, G. L. Zississ, eds. (SPIE Press, Bellingham, Wash., 1993), pp. 3–71–3–73.

P. R. Griffiths, “FT-IR spectrometry at low resolution: how low can you go?” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, Proc. SPIE2089, 2–8, (1994).
[CrossRef]

D. F. Flanigan, “Hazardous cloud imaging: an in-depth study,” (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1997).

W. J. Barrett, E. B. Dismukes, “Infrared spectral studies of agents and field contaminants,” , contract DAAA15-68-C-0154 (Clearinghouse for Federal Scientific and Technical Information, Cameron Station, Va., 1969).

R. T. Kroutil, R. J. Combs, R. B. Knapp, G. W. Small, “Remote infrared vapor detection of volatile organic compounds,” in 9th International Conference on Fourier Transform Spectroscopy, J. E. Bertie, H. Wieser, eds., Proc. SPIE2089, 24–31 (1994).
[CrossRef]

T. J. Bauer, R. L. Gibbs, “Software User’s Manual for the Chemical, Biological Agent Vapor, Liquid, and Solid Tracking (VLSTRACK) Computer Model,” Version 1.6.1, (Available from Commander, attn: B51, NSWC, 17320 Dahlgren Rd., Dahlgren, Va. 22448-5100, 1995).

D. W. Hoock, “Modeling time dependent obscuration for simulating imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (32)

Fig. 1
Fig. 1

(a) Comparative FOV for the M21 (seven dark squares each 1.5 deg on a side), FLIR (one gray rectangle, 4 deg × 6 deg), and the HAZCI (8 × 60 square pixels each 1 deg on a side); (b) the HAZCI display (8 × 59 rectangular pixels).

Fig. 2
Fig. 2

The infralow resolution (64-cm-1) spectra for Sarin (dark curve) and nine interferents.

Fig. 3
Fig. 3

Optimum coefficients for the detection of Sarin, picked by inspection of the Sarin signature.

Fig. 4
Fig. 4

Raster line of 59 infralow resolution spectra, one at each pixel. Ten pixels contain either the target or an interferent plus noise. Forty-nine pixels contain only noise.

Fig. 5
Fig. 5

Response curve for the LD shown in Fig. 3 with the 59 infralow resolution spectra. The 25th pixel contains 100 mg/m2 of Sarin.

Fig. 6
Fig. 6

Low-resolution (16-cm-1) spectra for Sarin (dark curve) and nine interferents.

Fig. 7
Fig. 7

Optimum coefficients for the discrimination of Sarin from the nine interferents, computed by linear programming.

Fig. 8
Fig. 8

Raster line of 59 low-resolution spectra, one at each pixel. Ten pixels contain either the target or an interferent plus noise. Forty-nine pixels contain only noise.

Fig. 9
Fig. 9

Response curve for the LD shown in Fig. 7 with the 59 low-resolution spectra. The 25th pixel contains 100 mg/m2 of Sarin.

Fig. 10
Fig. 10

Concentration of the bottom layer only of the Sarin attack 6 min after detonation.

Fig. 11
Fig. 11

CL of all layers of the 16-bomb Sarin attack as seen from downwind.

Fig. 12
Fig. 12

Response of all layers of the 16-bomb Sarin attack, as seen from downwind, at the detection step. Time = 1 s.

Fig. 13
Fig. 13

Raster image of the response shown in Fig. 12.

Fig. 14
Fig. 14

CL cloud viewed from crosswind when Hoock’s turbulence criteria (smoothed for 16 munitions) are applied.

Fig. 15
Fig. 15

Raster image of the CL cloud at a range of 4 km downwind shown in Fig. 14 at a range of 1 km.

Fig. 16
Fig. 16

Raster image of the response of the detection LD to the 16-bomb Sarin attack at a range of 4 km downwind. Time = 1 s.

Fig. 17
Fig. 17

Raster image of the response of the detection LD to the 16-bomb Sarin attack at a range of 4 km crosswind. Time = 1 s.

Fig. 18
Fig. 18

Raster image of the response to the downwind CL cloud × 0.005 (maximum CL = 6 mg/m2) to the 16-bomb Sarin attack at a range of 4 km. Time = 1 s.

Fig. 19
Fig. 19

Infralow (64-cm-1) resolution signatures of mustard (dark curve) and the nine interferents.

Fig. 20
Fig. 20

LD picked by inspection of Fig. 19 for detection without regard to discrimination.

Fig. 21
Fig. 21

Low- (16-cm-1) resolution signatures of mustard (dark curve) and the nine interferents.

Fig. 22
Fig. 22

LD picked by linear programming for discrimination between mustard and the nine interferents.

Fig. 23
Fig. 23

Response curve of the LD shown in Fig. 22 to the nine interferents and mustard (pixel 25).

Fig. 24
Fig. 24

Raster image of the response of the detection LD (Fig. 20) to the downwind CL cloud. Time = 1 s.

Fig. 25
Fig. 25

Raster image of the response to 0.01 × the downwind CL cloud at 1 km (limit, 60 mg/m2).

Fig. 26
Fig. 26

Infralow resolution signature of M. Luteus from Querry and nine interferents.

Fig. 27
Fig. 27

Infralow resolution LD for the detection and discrimination of a biological cloud.

Fig. 28
Fig. 28

Response curve of the LD in Fig. 27 to the nine interferents and M. Luteus (pixel 25).

Fig. 29
Fig. 29

Concentration (particles per cubic meter) of a biological cloud at a 50-m altitude from a single large missile detonated at a 50-m altitude at 12 min past detonation.

Fig. 30
Fig. 30

CL (particles per square meter) of biological cloud viewed from downwind.

Fig. 31
Fig. 31

Raster image of the response to biological CL cloud at 4 km downwind. Time = 1 s.

Fig. 32
Fig. 32

Raster image of response to 0.002 × biological CL cloud from downwind at 4 km. Time = 1 s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=Absc1Δ2s1++cnΔ2sn=Absi=1nciΔ2si,

Metrics